Next: , Previous: Функции и переменные для описательной статистики, Up: Пакет descriptive   [Contents][Index]

43.4 Функции и переменные для многомерной описательной статистики

Функция: cov (matrix)

Матрица ковариации многомерной выборки, определенная как

              n
             ====
          1  \           _        _
      S = -   >    (X  - X) (X  - X)'
          n  /       j        j
             ====
             j = 1

где X_j есть j-й столбец матрицы выборки.

Пример:

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) fpprintprec : 7$  /* change precision for pretty output */
(%i5) cov (s2);
      [ 17.22191  13.61811  14.37217  19.39624  15.42162 ]
      [                                                  ]
      [ 13.61811  14.98774  13.30448  15.15834  14.9711  ]
      [                                                  ]
(%o5) [ 14.37217  13.30448  15.47573  17.32544  16.18171 ]
      [                                                  ]
      [ 19.39624  15.15834  17.32544  32.17651  20.44685 ]
      [                                                  ]
      [ 15.42162  14.9711   16.18171  20.44685  24.42308 ]

См. также функцию cov1.

Функция: cov1 (matrix)

Матрица ковариации многомерной выборки, определенная как

              n
             ====
         1   \           _        _
   S  = ---   >    (X  - X) (X  - X)'
    1   n-1  /       j        j
             ====
             j = 1

где X_j есть j-й столбец матрицы выборки.

Пример:

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) fpprintprec : 7$ /* change precision for pretty output */
(%i5) cov1 (s2);
      [ 17.39587  13.75567  14.51734  19.59216  15.5774  ]
      [                                                  ]
      [ 13.75567  15.13913  13.43887  15.31145  15.12232 ]
      [                                                  ]
(%o5) [ 14.51734  13.43887  15.63205  17.50044  16.34516 ]
      [                                                  ]
      [ 19.59216  15.31145  17.50044  32.50153  20.65338 ]
      [                                                  ]
      [ 15.5774   15.12232  16.34516  20.65338  24.66977 ]

См. также функцию cov.

Функция: global_variances (matrix)
Функция: global_variances (matrix, logical_value)

Функция global_variances возвращает список глобальных измерений дисперсии:

где p есть размерность многомерной случайной переменной а S_1 есть матрица ковариации, возвращаемая cov1.

Пример:

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) global_variances (s2);
(%o4) [105.338342060606, 21.06766841212119, 12874.34690469686, 
         113.4651792608502, 6.636590811800794, 2.576158149609762]

Функция global_variances имеет необязательный логический аргумент: global_variances(x,true) сообщает Maxima, что x есть матрица данных, что дает результат идентичный global_variances(x). С другой стороны, global_variances(x,false) означает, что x не является матрицей данных а является матрицей ковариации, что позволяет избежать перевычисления

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) s : cov1 (s2)$
(%i5) global_variances (s, false);
(%o5) [105.338342060606, 21.06766841212119, 12874.34690469686, 
         113.4651792608502, 6.636590811800794, 2.576158149609762]

См. также cov и cov1.

Функция: cor (matrix)
Функция: cor (matrix, logical_value)

Матрица корреляции многомерной выборки.

Пример:

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) fpprintprec:7$
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) cor (s2);
      [   1.0     .8476339  .8803515  .8239624  .7519506 ]
      [                                                  ]
      [ .8476339    1.0     .8735834  .6902622  0.782502 ]
      [                                                  ]
(%o5) [ .8803515  .8735834    1.0     .7764065  .8323358 ]
      [                                                  ]
      [ .8239624  .6902622  .7764065    1.0     .7293848 ]
      [                                                  ]
      [ .7519506  0.782502  .8323358  .7293848    1.0    ]

Функция cor имеет необязательный логический аргумент: cor(x,true) сообщает Maxima, что x есть матрица данных, что дает результат идентичный cor(x). С другой стороны, cor(x,false) означает, что x не является матрицей данных а является матрицей ковариации, что позволяет избежать перевычисления

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) fpprintprec:7$
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) s : cov1 (s2)$
(%i6) cor (s, false); /* this is faster */
      [   1.0     .8476339  .8803515  .8239624  .7519506 ]
      [                                                  ]
      [ .8476339    1.0     .8735834  .6902622  0.782502 ]
      [                                                  ]
(%o6) [ .8803515  .8735834    1.0     .7764065  .8323358 ]
      [                                                  ]
      [ .8239624  .6902622  .7764065    1.0     .7293848 ]
      [                                                  ]
      [ .7519506  0.782502  .8323358  .7293848    1.0    ]

См. также cov и cov1.

Функция: list_correlations (matrix)
Функция: list_correlations (matrix, logical_value)

Функция list_correlations возвращает список мер корреляции:

Пример:

(%i1) load ("descriptive")$
(%i2) load ("numericalio")$
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) z : list_correlations (s2)$
(%i5) fpprintprec : 5$ /* for pretty output */
(%i6) z[1];  /* precision matrix */
      [  .38486   - .13856   - .15626   - .10239    .031179  ]
      [                                                      ]
      [ - .13856   .34107    - .15233    .038447   - .052842 ]
      [                                                      ]
(%o6) [ - .15626  - .15233    .47296    - .024816  - .10054  ]
      [                                                      ]
      [ - .10239   .038447   - .024816   .10937    - .034033 ]
      [                                                      ]
      [ .031179   - .052842  - .10054   - .034033   .14834   ]
(%i7) z[2];  /* multiple correlation vector */
(%o7)       [.85063, .80634, .86474, .71867, .72675]
(%i8) z[3];  /* partial correlation matrix */
       [  - 1.0     .38244   .36627   .49908   - .13049 ]
       [                                                ]
       [  .38244    - 1.0    .37927  - .19907   .23492  ]
       [                                                ]
(%o8)  [  .36627    .37927   - 1.0    .10911    .37956  ]
       [                                                ]
       [  .49908   - .19907  .10911   - 1.0     .26719  ]
       [                                                ]
       [ - .13049   .23492   .37956   .26719    - 1.0   ]

Функция list_correlations имеет необязательный логический аргумент: list_correlations(x,true) сообщает Maxima, что x есть матрица данных, что дает результат идентичный list_correlations(x). С другой стороны, list_correlations(x,false) означает, что x не является матрицей данных а является матрицей ковариации, что позволяет избежать перевычисления

См. также cov и cov1.


Next: , Previous: Функции и переменные для описательной статистики, Up: Пакет descriptive   [Contents][Index]