Previous: Functions and Variables for descriptive statistics, Up: descriptive [Contents][Index]
1変量、多変量どちらの標本でも離散統計変数の棒グラフをプロットします
dataは1標本を意味する結果のリストかもしれませんし、 それぞれサイズmのn個の標本を意味するm行n列の行列かもしれません。
利用可能なオプションは以下のものです:
draw
パッケージで定義されたもの。
3/4
): 長方形の相対幅。
値は範囲[0,1]
内でなければいけません。
clustered
):
複数の標本をいかに表示するか示します。
有効な値: clustered
と stacked
。
1
): 棒の2つの隣り合うグループの隙間を表す正の整数。
[]
): 複数の標本のための色のリスト。
指定された色よりもたくさん標本がある時は、
追加で必要な色はランダムに選ばれます。
更に詳しくはcolor
を参照してください。
absolute
): 縦座標のスケールを示します。
可能な値: absolute
, relative
, percent
。
orderlessp
): 可能な値はorderlessp
かordergreatp
です。
統計的結果がどちら向きにx軸に並んでいるかを示します。
[]
): 凡例に使われる文字列のリスト。
リストの長さが0か標本の長さ以外なら、
エラーメッセージを返します。
0
): x軸上のどこからプロットされるか示します。
barsplot
が内部で割り当てる
xtics
を除くすべてのグローバル draw
オプション
もしこのオプションに自分の値を設定し、複雑なシーンを構築したいなら、
barsplot_description
を使用してください。
以下の例を参照してください。
draw
オプション: key
, color
,
fill_color
, fill_density
, line_width
。
bars
も参照してください。
関数barsplot_description
は
他のグラフィックオブジェクトと一緒に複雑なシーンを生成するために
グラフィックオブジェクトを生成します。
wxMaximaとiMaximaインターフェイスで埋め込みヒストグラムを生成するための
関数wxbarsplot
もあります。
例:
行列形式での1変量標本。絶対頻度。
(%i1) load ("descriptive")$ (%i2) m : read_matrix (file_search ("biomed.data"))$
(%i3) barsplot( col(m,2), title = "Ages", xlabel = "years", box_width = 1/2, fill_density = 3/4)$
異なるサイズの2つの標本。 相対頻度とユーザー宣言の色を使って。
(%i1) load ("descriptive")$ (%i2) l1:makelist(random(10),k,1,50)$ (%i3) l2:makelist(random(10),k,1,100)$
(%i4) barsplot( l1,l2, box_width = 1, fill_density = 1, bars_colors = [black, grey], frequencies = relative, sample_keys = ["A", "B"])$
サイズが等しい4つの非数標本。
(%i1) load ("descriptive")$
(%i2) barsplot( makelist([Yes, No, Maybe][random(3)+1],k,1,50), makelist([Yes, No, Maybe][random(3)+1],k,1,50), makelist([Yes, No, Maybe][random(3)+1],k,1,50), makelist([Yes, No, Maybe][random(3)+1],k,1,50), title = "Asking for something to four groups", ylabel = "# of individuals", groups_gap = 3, fill_density = 0.5, ordering = ordergreatp)$
スタックバー。
(%i1) load ("descriptive")$
(%i2) barsplot( makelist([Yes, No, Maybe][random(3)+1],k,1,50), makelist([Yes, No, Maybe][random(3)+1],k,1,50), makelist([Yes, No, Maybe][random(3)+1],k,1,50), makelist([Yes, No, Maybe][random(3)+1],k,1,50), title = "Asking for something to four groups", ylabel = "# of individuals", grouping = stacked, fill_density = 0.5, ordering = ordergreatp)$
複数プロット文脈でのbarsplot
。
(%i1) load ("descriptive")$ (%i2) l1:makelist(random(10),k,1,50)$ (%i3) l2:makelist(random(10),k,1,100)$ (%i4) bp1 : barsplot_description( l1, box_width = 1, fill_density = 0.5, bars_colors = [blue], frequency = relative)$ (%i5) bp2 : barsplot_description( l2, box_width = 1, fill_density = 0.5, bars_colors = [red], frequency = relative)$ (%i6) draw(gr2d(bp1), gr2d(bp2))$
棒グラフ関連オプションについては、パッケージdraw
のbars
を参照してください。
関数histogram
とpiechart
も参照してください。
この関数は箱ひげ図をプロットします。
引数dataはリストだったり行列だったりします。
箱ひげ図は主に異なる標本の比較に使われるので、リストはあまり興味深くありません。
行列の場合には多変量統計変数の複数成分おw比較することが可能です。
しかし、できる限り異なる標本サイズの標本のリストも許すようにしています。
実際、これは、パッケージdescriptive
の中で
この種のデータ構造を許容する唯一の関数です
利用可能なオプションは以下のものです:
3/4
): 箱の相対幅。
この値は範囲[0,1]
内でなければいけません。
vertical
): 可能な値: vertical
と horizontal
。
boxplot
が内部で割り当てる
points_joined
, point_size
, point_type
,
xtics
, ytics
, xrange
, yrange
を除く
すべての draw
オプション。
もしこのオプションに自分の値を設定し、複雑なシーンを構築したいなら、
boxplot_description
を使用してください。
draw
オプション: key
, color
, line_width
。
関数boxplot_description
は
他のグラフィックオブジェクトと一緒に複雑なシーンを生成するために
グラフィックオブジェクトを生成します。
wxMaximaとiMaximaインターフェイスで埋め込みヒストグラムを生成するための
関数wxbarsplot
もあります。
例:
多変量標本の箱ひげ図。
(%i1) load ("descriptive")$ (%i2) s2 : read_matrix(file_search("wind.data"))$
(%i3) boxplot(s2, box_width = 0.2, title = "Windspeed in knots", xlabel = "Stations", color = red, line_width = 2)$
異なるサイズの3つの標本の箱ひげ図。
(%i1) load ("descriptive")$
(%i2) A : [[6, 4, 6, 2, 4, 8, 6, 4, 6, 4, 3, 2], [8, 10, 7, 9, 12, 8, 10], [16, 13, 17, 12, 11, 18, 13, 18, 14, 12]]$
(%i3) boxplot (A, box_orientation = horizontal)$
この関数は一連の標本からヒストグラムをプロットします。 標本データは数のリストか一次元行列に保存しなければいけません。
利用可能なオプションは以下のものです:
10
): ヒストグラムのクラス数、もしくは
クラスの境界と数か境界だけを含むリスト。
absolute
): 縦座標のスケールを示します。
可能な値: absolute
, relative
, percent
。
auto
): ヒストグラムチックのフォーマット。
可能な値: auto
, endpoints
, intervals
, かラベルのリスト。
histogram
が内部で割り当てるxrange
, yrange
, xtics
を除く
すべてのグローバル draw
オプション。
もしこれらのオプションに自分の値を設定したいなら、
histogram_description
を利用してください。
以下の例を参照してください。
draw
オプション: key
, color
,
fill_color
, fill_density
と line_width
.
bars
も参照してください。
関数 histogram_description
は他のグラフィックオブジェクトと一緒に
複雑なシーンを生成するのに適したグラフィックオブジェクトを生成します。
wxMaximaと iMaximaインターフェイスで埋め込みヒストグラムを生成する
関数wxhistogram
もあります。
例:
8クラスを持つ簡単なヒストグラム。
(%i1) load ("descriptive")$ (%i2) s1 : read_list (file_search ("pidigits.data"))$ (%i3) histogram ( s1, nclasses = 8, title = "pi digits", xlabel = "digits", ylabel = "Absolute frequency", fill_color = grey, fill_density = 0.6)$
ヒストグラムの境界を-2と12に、クラス数を3に設定します。 また予め定義されたチックを導入します:
(%i1) load ("descriptive")$ (%i2) s1 : read_list (file_search ("pidigits.data"))$ (%i3) histogram ( s1, nclasses = [-2,12,3], htics = ["A", "B", "C"], terminal = png, fill_color = "#23afa0", fill_density = 0.6)$
xrange
を設定しシーンの中に明示的な曲線を足すのに
histogram_description
を利用します:
(%i1) load ("descriptive")$ (%i2) ( load("distrib"), m: 14, s: 2, s2: random_normal(m, s, 1000) ) $ (%i3) draw2d( grid = true, xrange = [5, 25], histogram_description( s2, nclasses = 9, frequency = relative, fill_density = 0.5), explicit(pdf_normal(x,m,s), x, m - 3*s, m + 3* s))$
barsplot
に似ていますが、長方形の代わりに扇をプロットします。
利用可能なオプションは以下のものです:
[]
): セクタの色のリスト。
指定した色よりも多くセクタがあるときは、必要な色の超過分がランダムに選ばれます。
それらについて更に知るには color
を参照してください。
[0,0]
): 円グラフの中心。
1
): 円グラフの半径。
piechart
が内部で割り当てるkey
を除いたすべてのグローバル draw
オプション。
もしこのオプションに自分の値を設定し、複雑なシーンを構築したいなら、
piechart_description
を利用してください。
draw
オプション: key
, color
,
fill_display
, line_width
。
ellipse
も参照してください。
関数 piechart_description
は他のグラフィックオブジェクトと一緒に
複雑なシーンを生成するのに適したグラフィックオブジェクトを生成します。
wxMaximaと iMaximaインターフェイスで埋め込みヒストグラムを生成する
関数wxhistogram
もあります。
例:
(%i1) load ("descriptive")$ (%i2) s1 : read_list (file_search ("pidigits.data"))$ (%i3) piechart( s1, xrange = [-1.1, 1.3], yrange = [-1.1, 1.1], title = "Digit frequencies in pi")$
関数barsplot
も参照してください。
1変量(list)や多変量(matrix)の標本の散布図をプロットします。
利用可能なオプションは histogram
が許すものと同じです。
関数 scatterplot_description
は他のグラフィックオブジェクトと一緒に
複雑なシーンを生成するのに適したグラフィックオブジェクトを生成します。
wxMaximaと iMaximaインターフェイスで埋め込みヒストグラムを生成する
関数wxscatterplot
もあります。
例:
シミュレーティッドGauss標本の1変量散布図。
(%i1) load ("descriptive")$ (%i2) load ("distrib")$
(%i3) scatterplot( random_normal(0,1,200), xaxis = true, point_size = 2, dimensions = [600,150])$
二次元散布図。
(%i1) load ("descriptive")$ (%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot( submatrix(s2, 1,2,3), title = "Data from stations #4 and #5", point_type = diamant, point_size = 2, color = blue)$
3次元散布図。
(%i1) load ("descriptive")$ (%i2) s2 : read_matrix (file_search ("wind.data"))$ (%i3) scatterplot(submatrix (s2, 1,2), nclasses=4)$
5つのクラスのヒストグラムと5次元散布図。
(%i1) load ("descriptive")$ (%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot( s2, nclasses = 5, frequency = relative, fill_color = blue, fill_density = 0.3, xtics = 5)$
2次元か3次元で孤立点か線で結んだ点をプロットすることについては、
points
を参照してください。
histogram
も参照してください。
1変量、多変量どちらの標本でも離散統計変数のスターダイアグラムをプロットします
dataは1標本を意味する結果のリストかもしれませんし、 それぞれサイズmのn個の標本を意味するm行n列の行列かもしれません。
利用可能なオプションは以下のものです:
[]
): 多変量標本の色のリスト。
指定した色よりも多くセクタがあるときは、必要な色の超過分がランダムに選ばれます。
それらについて更に知るには color
を参照してください。
absolute
): 半径のスケールを示します。
可能な値: absolute
, relative
, percent
。
orderlessp
): 可能な値はorderlessp
かordergreatp
です。
統計的結果がどちら向きにx軸に並んでいるかを示します。
[]
): 凡例に使われる文字列のリスト。
リストの長さが0か標本の長さ以外なら、
エラーメッセージを返します。
[0,0]
): ダイアグラムの中心。
1
): ダイアグラムの半径。
starplot
が内部で割り当てるpoints_joined
, point_type
, key
を除いたすべてのグローバル draw
オプション。
もしこのオプションに自分の値を設定し、複雑なシーンを構築したいなら、
starplot_description
を利用してください。
draw
オプション: line_width
。
関数 starplot_description
は他のグラフィックオブジェクトと一緒に
複雑なシーンを生成するのに適したグラフィックオブジェクトを生成します。
wxMaximaと iMaximaインターフェイスで埋め込みヒストグラムを生成する
関数wxstarplot
もあります。
例:
絶対頻度に基づいたプロット。 ユーザーが定義した位置と半径。
(%i1) load ("descriptive")$ (%i2) l1: makelist(random(10),k,1,50)$ (%i3) l2: makelist(random(10),k,1,200)$
(%i4) starplot( l1, l2, stars_colors = [blue,red], sample_keys = ["1st sample", "2nd sample"], star_center = [1,2], star_radius = 4, proportional_axes = xy, line_width = 2 ) $
幹葉図をプロットします。
固有の利用可能なオプションは:
1
): 葉の単位を示します;
10のべきでなければいけません。
例:
(%i1) load ("descriptive")$ (%i2) load("distrib")$
(%i3) stemplot( random_normal(15, 6, 100), leaf_unit = 0.1); -5|4 0|37 1|7 3|6 4|4 5|4 6|57 7|0149 8|3 9|1334588 10|07888 11|01144467789 12|12566889 13|24778 14|047 15|223458 16|4 17|11557 18|000247 19|4467799 20|00 21|1 22|2335 23|01457 24|12356 25|455 27|79 key: 6|3 = 6.3 (%o3) done
Previous: Functions and Variables for descriptive statistics, Up: descriptive [Contents][Index]