Next: , Previous: Functions and Variables for data manipulation, Up: descriptive   [Contents][Index]

45.3 Functions and Variables for descriptive statistics

関数: mean (list)
関数: mean (matrix)

これは標本平均です。以下のように定義されます。

                       n
                     ====
             _   1   \
             x = -    >    x
                 n   /      i
                     ====
                     i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean (s1);
                               471
(%o3)                          ---
                               100
(%i4) %, numer;
(%o4)                         4.71
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) mean (s2);
(%o6)     [9.9485, 10.1607, 10.8685, 15.7166, 14.8441]
関数: var (list)
関数: var (matrix)

これは標本分散です。以下のように定義されます。

                     n
                   ====
           2   1   \          _ 2
          s  = -    >    (x - x)
               n   /       i
                   ====
                   i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var (s1), numer;
(%o3)                   8.425899999999999

関数var1も参照してください。

関数: var1 (list)
関数: var1 (matrix)

これは標本分散です。以下のように定義されます。

                     n
                   ====
               1   \          _ 2
              ---   >    (x - x)
              n-1  /       i
                   ====
                   i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) var1 (s1), numer;
(%o3)                    8.5110101010101
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) var1 (s2);
(%o5) [17.39586540404041, 15.13912778787879, 15.63204924242424, 
                            32.50152569696971, 24.66977392929294]

関数varも参照してください。

関数: std (list)
関数: std (matrix)

これは分母nの分散である関数varの平方根です。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std (s1), numer;
(%o3)                   2.902740084816414
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std (s2);
(%o5) [4.149928523480858, 3.871399812729241, 3.933920277534866, 
                            5.672434260526957, 4.941970881136392]

関数varstd1も参照してください。

関数: std1 (list)
関数: std1 (matrix)

これは分母n-1の分散である関数var1の平方根です。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) std1 (s1), numer;
(%o3)                   2.917363553109228
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) std1 (s2);
(%o5) [4.170835096721089, 3.89090320978032, 3.953738641137555, 
                            5.701010936401517, 4.966867617451963]

See also functions var1 and std.

関数: noncentral_moment (list, k)
関数: noncentral_moment (matrix, k)

次数kの非中心モーメントです。以下のように定義されます。

                       n
                     ====
                 1   \      k
                 -    >    x
                 n   /      i
                     ====
                     i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) noncentral_moment (s1, 1), numer; /* the mean */
(%o3)                         4.71
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) noncentral_moment (s2, 5);
(%o6) [319793.8724761505, 320532.1923892463,
      391249.5621381556, 2502278.205988911, 1691881.797742255]

関数central_momentも参照してください。

関数: central_moment (list, k)
関数: central_moment (matrix, k)

次数kの中心モーメントです。以下のように定義されます。

                    n
                  ====
              1   \          _ k
              -    >    (x - x)
              n   /       i
                  ====
                  i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) central_moment (s1, 2), numer; /* the variance */
(%o3)                   8.425899999999999
(%i5) s2 : read_matrix (file_search ("wind.data"))$
(%i6) central_moment (s2, 3);
(%o6) [11.29584771375004, 16.97988248298583, 5.626661952750102,
                             37.5986572057918, 25.85981904394192]

関数noncentral_momentmeanも参照してください。

関数: cv (list)
関数: cv (matrix)

変動係数は標本標準偏差(std)を平均meanで割った商です。

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) cv (s1), numer;
(%o3)                   .6193977819764815
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) cv (s2);
(%o5) [.4192426091090204, .3829365309260502, 0.363779605385983, 
                            .3627381836021478, .3346021393989506]

関数stdmeanも参照してください。

関数: smin (list)
関数: smin (matrix)

これは標本listの最小値です。 引数が行列の時、 sminは 統計変数に関連付けられた列の最小値を含むリストを返します。

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) smin (s1);
(%o3)                           0
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) smin (s2);
(%o5)             [0.58, 0.5, 2.67, 5.25, 5.17]

See also function smax.

関数: smax (list)
関数: smax (matrix)

これは標本listの最大値です。 引数が行列の時、 smaxは 統計変数に関連付けられた列の最大値を含むリストを返します。

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) smax (s1);
(%o3)                           9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) smax (s2);
(%o5)          [20.25, 21.46, 20.04, 29.63, 27.63]

関数sminも参照してください。

関数: range (list)
関数: range (matrix)

範囲は極値の差です。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) range (s1);
(%o3)                           9
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) range (s2);
(%o5)          [19.67, 20.96, 17.37, 24.38, 22.46]
関数: quantile (list, p)
関数: quantile (matrix, p)

これは標本listp分位数です。p[0, 1]の範囲の数です。 標本分位数にはいくつかの定義がありますが (Hyndman, R. J., Fan, Y. (1996) Sample quantiles in statistical packages. American Statistician, 50, 361-365)、 パッケージdescriptiveでは線形内挿に基づいたものが実装されています。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) /* 1st and 3rd quartiles */
         [quantile (s1, 1/4), quantile (s1, 3/4)], numer;
(%o3)                      [2.0, 7.25]
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quantile (s2, 1/4);
(%o5)    [7.2575, 7.477500000000001, 7.82, 11.28, 11.48]
関数: median (list)
関数: median (matrix)

一旦標本が順に並べられると、 もし標本サイズが奇数ならメジアンは中央値であり、 そうでなければ2つの中央値の平均です。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median (s1);
                                9
(%o3)                           -
                                2
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median (s2);
(%o5)         [10.06, 9.855, 10.73, 15.48, 14.105]

メジアンは1/2分位数です。

関数quantileも参照してください。

関数: qrange (list)
関数: qrange (matrix)

四分位範囲は 三番目と一番目の分位数の差 quantile(list,3/4) - quantile(list,1/4) です。

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) qrange (s1);
                               21
(%o3)                          --
                               4
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) qrange (s2);
(%o5) [5.385, 5.572499999999998, 6.022500000000001, 
                            8.729999999999999, 6.649999999999999]

関数quantileも参照してください。

関数: mean_deviation (list)
関数: mean_deviation (matrix)

平均偏差です。以下のように定義されます。

                     n
                   ====
               1   \          _
               -    >    |x - x|
               n   /       i
                   ====
                   i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) mean_deviation (s1);
                               51
(%o3)                          --
                               20
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) mean_deviation (s2);
(%o5) [3.287959999999999, 3.075342, 3.23907, 4.715664000000001, 
                                               4.028546000000002]

関数meanも参照してください。

関数: median_deviation (list)
関数: median_deviation (matrix)

メジアン偏差です。以下のように定義されます。

                 n
               ====
           1   \
           -    >    |x - med|
           n   /       i
               ====
               i = 1

ここでmedlistのメジアンです。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) median_deviation (s1);
                                5
(%o3)                           -
                                2
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) median_deviation (s2);
(%o5)           [2.75, 2.755, 3.08, 4.315, 3.31]

関数meanも参照してください。

関数: harmonic_mean (list)
関数: harmonic_mean (matrix)

調和平均です。以下のように定義されます。

                  n
               --------
                n
               ====
               \     1
                >    --
               /     x
               ====   i
               i = 1

例:

(%i1) load ("descriptive")$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) harmonic_mean (y), numer;
(%o3)                   3.901858027632205
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) harmonic_mean (s2);
(%o5) [6.948015590052786, 7.391967752360356, 9.055658197151745, 
                            13.44199028193692, 13.01439145898509]

関数meangeometric_meanも参照してください。

関数: geometric_mean (list)
関数: geometric_mean (matrix)

幾何平均です。以下のように定義されます。

                 /  n      \ 1/n
                 | /===\   |
                 |  ! !    |
                 |  ! !  x |
                 |  ! !   i|
                 | i = 1   |
                 \         /

例:

(%i1) load ("descriptive")$
(%i2) y : [5, 7, 2, 5, 9, 5, 6, 4, 9, 2, 4, 2, 5]$
(%i3) geometric_mean (y), numer;
(%o3)                   4.454845412337012
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) geometric_mean (s2);
(%o5) [8.82476274347979, 9.22652604739361, 10.0442675714889, 
                            14.61274126349021, 13.96184163444275]

関数meanharmonic_meanも参照してください。

関数: kurtosis (list)
関数: kurtosis (matrix)

尖度係数です。以下のように定義されます。

                    n
                  ====
            1     \          _ 4
           ----    >    (x - x)  - 3
              4   /       i
           n s    ====
                  i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) kurtosis (s1), numer;
(%o3)                  - 1.273247946514421
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) kurtosis (s2);
(%o5) [- .2715445622195385, 0.119998784429451, 
     - .4275233490482861, - .6405361979019522, - .4952382132352935]

関数mean, var, skewnessも参照してください。

関数: skewness (list)
関数: skewness (matrix)

歪度係数です。以下のように定義されます。

                    n
                  ====
            1     \          _ 3
           ----    >    (x - x)
              3   /       i
           n s    ====
                  i = 1

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) skewness (s1), numer;
(%o3)                  .009196180476450424
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) skewness (s2);
(%o5) [.1580509020000978, .2926379232061854, .09242174416107717, 
                            .2059984348148687, .2142520248890831]

関数mean, var, kurtosisも参照してください。

関数: pearson_skewness (list)
関数: pearson_skewness (matrix)

Pearsonの歪度係数です。以下のように定義されます。

                _
             3 (x - med)
             -----------
                  s

ここで medlistのメジアンです。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) pearson_skewness (s1), numer;
(%o3)                   .2159484029093895
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) pearson_skewness (s2);
(%o5) [- .08019976629211892, .2357036272952649, 
         .1050904062491204, .1245042340592368, .4464181795804519]

関数mean, var, medianも参照してください。

関数: quartile_skewness (list)
関数: quartile_skewness (matrix)

分位歪度係数です。以下のように定義されます。

               c    - 2 c    + c
                3/4      1/2    1/4
               --------------------
                   c    - c
                    3/4    1/4

ここでc_pは標本listp分位数です。

例:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) quartile_skewness (s1), numer;
(%o3)                  .04761904761904762
(%i4) s2 : read_matrix (file_search ("wind.data"))$
(%i5) quartile_skewness (s2);
(%o5) [- 0.0408542246982353, .1467025572005382, 
       0.0336239103362392, .03780068728522298, .2105263157894735]

関数quantileも参照してください。

関数: cov (matrix)

多変量標本の共分散行列です。以下のように定義されます。

              n
             ====
          1  \           _        _
      S = -   >    (X  - X) (X  - X)'
          n  /       j        j
             ====
             j = 1

ここでX_jは標本行列のj番目の行です。

例:

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$  /* change precision for pretty output */
(%i4) cov (s2);
      [ 17.22191  13.61811  14.37217  19.39624  15.42162 ]
      [                                                  ]
      [ 13.61811  14.98774  13.30448  15.15834  14.9711  ]
      [                                                  ]
(%o4) [ 14.37217  13.30448  15.47573  17.32544  16.18171 ]
      [                                                  ]
      [ 19.39624  15.15834  17.32544  32.17651  20.44685 ]
      [                                                  ]
      [ 15.42162  14.9711   16.18171  20.44685  24.42308 ]

関数cov1も参照してください。

関数: cov1 (matrix)

多変量標本の共分散行列です。以下のように定義されます。

              n
             ====
         1   \           _        _
   S  = ---   >    (X  - X) (X  - X)'
    1   n-1  /       j        j
             ====
             j = 1

ここでX_jは標本行列のj番目の行です。

例:

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) fpprintprec : 7$ /* change precision for pretty output */
(%i4) cov1 (s2);
      [ 17.39587  13.75567  14.51734  19.59216  15.5774  ]
      [                                                  ]
      [ 13.75567  15.13913  13.43887  15.31145  15.12232 ]
      [                                                  ]
(%o4) [ 14.51734  13.43887  15.63205  17.50044  16.34516 ]
      [                                                  ]
      [ 19.59216  15.31145  17.50044  32.50153  20.65338 ]
      [                                                  ]
      [ 15.5774   15.12232  16.34516  20.65338  24.66977 ]

関数covも参照してください。

関数: global_variances (matrix)
関数: global_variances (matrix, logical_value)

関数global_variancesは大域分散尺度のリストを返します:

ここでpは多変量確率変数の次元であり、 S_1cov1が返す共分散行列です。

例:

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) global_variances (s2);
(%o3) [105.338342060606, 21.06766841212119, 12874.34690469686, 
         113.4651792608501, 6.636590811800795, 2.576158149609762]

関数global_variancesはオプションの論理引数を取ります: global_variances(x,true)は、 Maximaにxがデータ行列であることを伝え、global_variances(x)と同様に作られます。 一方、global_variances(x,false)xがデータ行列ではなく、共分散行列であることを意味し、再計算は避けられます。

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) s : cov1 (s2)$
(%i4) global_variances (s, false);
(%o4) [105.338342060606, 21.06766841212119, 12874.34690469686, 
         113.4651792608501, 6.636590811800795, 2.576158149609762]

covcov1も参照してください。

関数: cor (matrix)
関数: cor (matrix, logical_value)

多変量標本の相関行列です。

例:

(%i1) load ("descriptive")$
(%i2) fpprintprec : 7 $
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) cor (s2);
      [   1.0     .8476339  .8803515  .8239624  .7519506 ]
      [                                                  ]
      [ .8476339    1.0     .8735834  .6902622  0.782502 ]
      [                                                  ]
(%o4) [ .8803515  .8735834    1.0     .7764065  .8323358 ]
      [                                                  ]
      [ .8239624  .6902622  .7764065    1.0     .7293848 ]
      [                                                  ]
      [ .7519506  0.782502  .8323358  .7293848    1.0    ]

関数corはオプションの論理引数を取ります: cor(x,true)は、 Maximaにxがデータ行列であることを伝え、cor(x)と同様に作られます。 一方、cor(x,false)xがデータ行列ではなく、共分散行列であることを意味し、再計算は避けられます。

(%i1) load ("descriptive")$
(%i2) fpprintprec : 7 $
(%i3) s2 : read_matrix (file_search ("wind.data"))$
(%i4) s : cov1 (s2)$
(%i5) cor (s, false); /* this is faster */
      [   1.0     .8476339  .8803515  .8239624  .7519506 ]
      [                                                  ]
      [ .8476339    1.0     .8735834  .6902622  0.782502 ]
      [                                                  ]
(%o5) [ .8803515  .8735834    1.0     .7764065  .8323358 ]
      [                                                  ]
      [ .8239624  .6902622  .7764065    1.0     .7293848 ]
      [                                                  ]
      [ .7519506  0.782502  .8323358  .7293848    1.0    ]

covcov1も参照してください。

関数: list_correlations (matrix)
関数: list_correlations (matrix, logical_value)

関数list_correlationsは相関尺度のリストを返します:

例:

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) z : list_correlations (s2)$
(%i4) fpprintprec : 5$ /* for pretty output */
(%i5) z[1];  /* precision matrix */
      [  .38486   - .13856   - .15626   - .10239    .031179  ]
      [                                                      ]
      [ - .13856   .34107    - .15233    .038447   - .052842 ]
      [                                                      ]
(%o5) [ - .15626  - .15233    .47296    - .024816  - .10054  ]
      [                                                      ]
      [ - .10239   .038447   - .024816   .10937    - .034033 ]
      [                                                      ]
      [ .031179   - .052842  - .10054   - .034033   .14834   ]
(%i6) z[2];  /* multiple correlation vector */
(%o6)      [.85063, .80634, .86474, .71867, .72675]
(%i7) z[3];  /* partial correlation matrix */
      [  - 1.0     .38244   .36627   .49908   - .13049 ]
      [                                                ]
      [  .38244    - 1.0    .37927  - .19907   .23492  ]
      [                                                ]
(%o7) [  .36627    .37927   - 1.0    .10911    .37956  ]
      [                                                ]
      [  .49908   - .19907  .10911   - 1.0     .26719  ]
      [                                                ]
      [ - .13049   .23492   .37956   .26719    - 1.0   ]

関数list_correlationsもオプションの論理引数を取ります: list_correlations(x,true)は、 Maximaにxがデータ行列であることを伝え、 list_correlations(x)と同様に作られます。 一方、list_correlations(x,false)xがデータ行列ではなく、共分散行列であることを意味し、再計算は避けられます。

covcov1も参照してください。


Next: , Previous: Functions and Variables for data manipulation, Up: descriptive   [Contents][Index]