Previous: Parabolic Cylinder Functions, Up: Special Functions [Contents][Index]
The principal branch of Lambert’s W function W(z) (DLMF 4.13), the solution of $$ z = W(z)e^{W(z)} $$
The k-th branch of Lambert’s W function W(z) (DLMF 4.13), the solution of \(z=W(z)e^{W(z)}\).
The principal branch, denoted
\(W_p(z)\) in DLMF, is lambert_w(z) = generalized_lambert_w(0,z)
.
The other branch with real values, denoted
\(W_m(z)\) in DLMF, is generalized_lambert_w(-1,z)
.
The Bateman k function
$$ k_v(x) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \cos(x \tan\theta-v\theta)d\theta $$It is a special case of the confluent hypergeometric function. Maxima can
calculate the Laplace transform of kbateman
using laplace
or specint
, but has no other knowledge of this function.
The Plasma Dispersion Function $$ {\rm nzeta}(z) = i\sqrt{\pi}e^{-z^2}(1-{\rm erf}(-iz)) $$
Returns realpart(nzeta(z))
.
Returns imagpart(nzeta(z))
.
Previous: Parabolic Cylinder Functions, Up: Special Functions [Contents][Index]