
A positional derivative package for Maxima

Barton Willis
University of Nebraska at Kearney

Kearney Nebraska

September 10, 2002∗

Introduction

Working with derivatives of unknown functions1 can be cumbersome in Maxima.
If we want, for example, the first order Taylor polynomial off (x+x2) aboutx= 1,
we get

(c1) taylor(f(x + x^2),x,1,1);

(d1)

f (2)+
(

d
d x

f
(
x2 +x

)∣∣∣∣
x=1

)
(x−1)+ · · ·

To “simplify” the Taylor polynomial, we must assign a gradient tof
(c2) gradef(f(x),df(x))$

(c3) taylor(f(x+x^2),x,1,1);

(d3)
f (2)+3d f (2) (x−1)+ · · ·

This method works well for simple problems, but it is tedious for functions
of several variables or high order derivatives. The positional derivative package
pdiff gives an alternative to usinggradef when working with derivatives of
unknown functions.

∗With minor updates November, 2006.
1By unknown function, we mean a function that isn’t bound to a formula and that has a deriva-

tive that isn’t known to Maxima.

1

Usage

To use the positional derivative package, first load it from the Maxima input
prompt.

(c1) load(pdiff)$

Loadingpdiff.lisp sets the option variableuse pdiff to true; whenuse diff

is true, Maxima will indicate derivatives of unknown functions positionally. To
illustrate, the first three derivatives off are

(c2) [diff(f(x),x),diff(f(x),x,2), diff(f(x),x,3)];
(d2) [

f(1)(x), f(2)(x), f(3)(x)
]

The subscript indicates the order of the derivative; sincef is a function of one
variable, the subscript has only one index. When a function has more than one
variable, the subscript has an index for each variable

(c3) [diff(f(x,y),x,0,y,1), diff(f(y,x),x,0,y,1)];

(d3) [
f(0,1)(x,y), f(1,0)(y,x)

]

Settinguse pdiff to false (either locally or globally) inhibits derivatives from
begin computed positionally

(c4) diff(f(x,x^2),x), use_pdiff : false;

(d4)
d

d x
f
(
x,x2)

(c5) diff(f(x,x^2),x), use_pdiff : true;

(d5)
f(1,0)(x,x

2)+2x f(0,1)(x,x
2)

Taylor polynomials of unknown functions can be found without usinggradef.
An example

(c6) taylor(f(x+x^2),x,1,2);

(d6)

f (2)+3 f(1)(2) (x−1)+

(
2 f(1)(2)+9 f(2)(2)

)
(x−1)2

2
+ · · ·

2

Additionally, we can verify thaty = f (x−ct)+g(x+ct) is a solution to a wave
equation without usinggradef

(c7) y : f(x-c*t) + g(x+c*t)$

(c8) ratsimp(diff(y,t,2) - c^2 * diff(y,x,2));

(d8)
0

(c9) remvalue(y)$

Expressions involving positional derivatives can be differentiated
(c10) e : diff(f(x,y),x);

(d10)
f(1,0)(x,y)

(c11) diff(e,y);

(d11)
f(1,1)(x,y)

The chain rule is applied when needed
(c12) [diff(f(x^2),x), diff(f(g(x)),x)];

(d12) [
2x f(1)(x

2),g(1)(x) f(1)(g(x))
]

The positional derivative package doesn’t alter the way known functions are
differentiated

(c13) diff(exp(-x^2),x);

(d13)
−2xe−x2

To convert positional derivatives to standard Maxima derivatives, useconvert to diff

(c14) e : [diff(f(x),x), diff(f(x,y),x,1,y,1)];

(d14) [
f(1)(x), f(1,1)(x,y)

]

(c15) e : convert_to_diff(e);

3

(d15) [
d

d x
f (x) ,

d2

d yd x
f (x,y)

]

To convert back to a positional derivative, useev with diff as an argument
(c16) ev(e,diff);

(d16) [
f(1)(x), f(1,1)(x,y)

]

Conversion to standard derivatives sometimes requires the introduction of a dummy
variable. Here’s an example

(c17) e : diff(f(x,y),x,1,y,1);

(d17)
f(1,1)(x,y)

(c18) e : subst(p(s),y,e);

(d18)
f(1,1)(x, p(s))

(c19) e : convert_to_diff(e);

(d19)
d2

d%x0d x
f (x,%x0)

∣∣∣∣
[%x0=p(s)]

Dummy variables have the form ci, where i=0,1,2. . . and c is the value of the
option variabledummy char. The default value fordummy char is %x. If a user
variable conflicts with a dummy variable, the conversion process can give an in-
correct value. To convert the previous expression back to a positional derivative,
useev with diff andat as arguments

(c20) ev(e,diff,at);

(d20)
f(1,1)(x, p(s))

Maxima correctly evaluates expressions involving positional derivatives if a
formula is later given to the function. (Thus converting an unknown function into
a known one.) Here is an example; let

4

(c21) e : diff(f(x^2),x);

(d21)
2x f(1)(x

2)

Now, give f a formula
(c22) f(x) := x^5;

(d22)
f (x) := x5

and evaluatee
(c23) ev(e);

(d23)
10x9

This result is the same as
(c24) diff(f(x^2),x);

(d24)
10x9

In this calculation, Maxima first evaluatesf (x) to x10 and then does the derivative.
Additionally, we can substitute a value forx before evaluating

(c25) ev(subst(2,x,e));

(d25)
5120

We can duplicate this with
(c26) subst(2,x,diff(f(x^2),x));

(d26)
5120

(c27) remfunction(f);

(d27)
[f]

We can also evaluate a positional derivative using a local function definition

5

(c28) e : diff(g(x),x);

(d28)
g(1)(x)

(c29) e, g(x) := sqrt(x);

(d29)
1

2
√

x

(c30) e, g = sqrt;

(d30)
1

2
√

x

(c31) e, g = h;

(d31)
h(1)(x)

(c32) e, g = lambda([t],t^2);

(d32)
2x

The pderivop function

If F is an atom andi1, i2, . . . in are nonnegative integers, then pderivop(F, i1, i2, . . . in),
is the function that has the formula

∂i1+i2+···+in

∂xi1
1 ∂xi2

2 · · ·∂xin
n

F(x1,x2, . . .xn).

If any of the derivative arguments are not nonnegative integers, we’ll get an error
(c33) pderivop(f,2,-1);

Each derivative order must be a nonnegative integer
Thepderivop function can be composed with itself

(c34) pderivop(pderivop(f,3,4),1,2);

(d34)
f(4,6)

6

If the number of derivative arguments between two calls topderivop isn’t the
same, Maxima gives an error

(c35) pderivop(pderivop(f,3,4),1);

The function f expected 2 derivative argument(s), but it received 1
Whenpderivop is applied to a known function, the result is a lambda form2

(c37) f(x) := x^2;

(d37)
f (x) := x2

(c38) df : pderivop(f,1);

(d38)
λ([Q1253] ,2Q1253)

(c39) apply(df,[z]);

(d39)
2z

(c40) ddf : pderivop(f,2);

(d40)
λ([Q1254] ,2)

(c41) apply(ddf,[10]);

(d41)
2

(c42) remfunction(f);

(d42)
[f]

If the first argument topderivop is a lambda form, the result is another
lambda form

(c43) f : pderivop(lambda([x],x^2),1);

(d43)
λ([Q1255] ,2Q1255)

2If you repeat theses calculations, you may get a different prefix for thegensym variables.

7

(c44) apply(f,[a]);

(d44)
2a

(c45) f : pderivop(lambda([x],x^2),2);

(d45)
λ([Q1256] ,2)

(c46) apply(f,[a]);

(d46)
2

(c47) f : pderivop(lambda([x],x^2),3);

(d47)
λ([Q1257] ,0)

(c48) apply(f,[a]);

(d48)
0

(c49) remvalue(f)$

If the first argument topderivop isn’t an atom or a lambda form, Maxima
will signal an error

(c50) pderivop(f+g,1);

Non-atom g+f used as a function
You may usetellsimpafter together withpderivop to give a value to a

derivative of a function at a point; an example
(c51) tellsimpafter(pderivop(f,1)(1),1)$

(c52) tellsimpafter(pderivop(f,2)(1),2)$

(c53) diff(f(x),x,2) + diff(f(x),x)$

(c54) subst(1,x,%);

(d54)
3

8

This technique works for functions of several variables as well
(c55) kill(rules)$

(c56) tellsimpafter(pderivop(f,1,0)(0,0),a)$

(c57) tellsimpafter(pderivop(f,0,1)(0,0),b)$

(c58) sublis([x = 0, y = 0], diff(f(x,y),x) + diff(f(x,y),y));

(d58)
b+a

TEX-ing positional derivatives

Several option variables control how positional derivatives are converted to TEX.
When the option variabletex uses prime for derivatives is true (default
false), makes functions of one variable TEX as superscripted primes

(c59) tex_uses_prime_for_derivatives : true$

(c60) tex(makelist(diff(f(x),x,i),i,1,3))$

(d60) [
f ′(x), f ′′(x), f ′′′(x)

]

(c61) tex(makelist(pderivop(f,i),i,1,3))$

[
f ′, f ′′, f ′′′

]

When the derivative order exceeds the value of the option variabletex prime limit,
(default 3) derivatives are indicated with parenthesis delimited superscripts

(c62) tex(makelist(pderivop(f,i),i,1,5)), tex_prime_limit : 0$

[
f (1), f (2), f (3), f (4), f (5)

]

(c63) tex(makelist(pderivop(f,i),i,1,5)), tex_prime_limit : 5$

[
f ′, f ′′, f ′′′, f ′′′′, f ′′′′′

]

The value oftex uses prime for derivatives doesn’t change the way
functions of two or more variables are converted to TEX.

9

(c64) tex(pderivop(f,2,1));

f(2,1)

When the option variabletex uses named subscripts for derivatives

(default false) is true, a derivative with respect to the i-th argument is indicated by
a subscript that is the i-th element of the option variabletex diff var names.
An example is the clearest way to describe this.

(c65) tex_uses_named_subscripts_for_derivatives : true$

(c66) tex_diff_var_names;

(d66)
[x,y,z]

(c67) tex([pderivop(f,1,0), pderivop(f,0,1), pderivop(f,1,1), pderivop(f,2,0)]);

[fx, fy, fxy, fxx]

(c68) tex_diff_var_names : [a,b];

(d68)
[a,b]

(c69) tex([pderivop(f,1,0), pderivop(f,0,1), pderivop(f,1,1), pderivop(f,2,0)]);

[fa, fb, fab, faa]

(c70) tex_diff_var_names : [x,y,z];

(d70)
[x,y,z]

(c71) tex([diff(f(x,y),x), diff(f(y,x),y)]);

[fx(x,y), fx(y,x)]

When the derivative order exceeds tt texprime limit, revert to the default
method for converting to TEX

10

(c72) tex(diff(f(x,y,z),x,1,y,1,z,1)), tex_prime_limit : 4$

fxyz(x,y,z)

(c73) tex(diff(f(x,y,z),x,1,y,1,z,1)), tex_prime_limit : 1$

f(1,1,1)(x,y,z)

A longer example

We’ll use the positional derivative package to change the independent variable of
the differential equation

(c74) de : 4*x^2*’diff(y,x,2) + 4*x*’diff(y,x,1) + (x-1)*y = 0;

(d74)

4x2
(

d2

d x2 y

)
+4x

(
d

d x
y

)
+(x−1) y = 0

With malice aforethought, we’ll assume a solution of the formy = g(xn),
wheren is a number. Substitutingy→ g(xn) in the differential equation gives

(c75) de : subst(g(x^n),y,de);

(d75)

4x2
(

d2

d x2 g(xn)
)

+4x

(
d

d x
g(xn)

)
+(x−1) g(xn) = 0

(c76) de : ev(de, diff);

(d76)

4x2 (
n2x2n−2g′′(xn)+(n−1) nxn−2g′(xn)

)
+4nxng′(xn)+(x−1) g(xn) = 0

Now letx→ t1/n

(c77) de : radcan(subst(x^(1/n),x, de));

(d77)

4n2x2g′′(x)+4n2xg′(x)+
(

x
1
n −1

)
g(x) = 0

11

Settingn→ 1/2, we recognize thatg is the order 1 Bessel equation
(c78) subst(1/2,n, de);

(d78)
x2g′′(x)+xg′(x)+

(
x2−1

)
g(x) = 0

Limitations

• Positional derivatives of subscripted functions are not allowed.

• Derivatives of unknown functions with symbolic orders are not computed
positionally.

• Thepdiff.lisp code alters the Maxima functionsmqapply andsdiffgrad
Although I’m unaware of any problems associated with these altered func-
tions, there may be some. Settinguse pdiff to false should restoremqapply
andsdiffgrad to their original functioning.

Conclusion

The pdiff package provides a simple way of working with derivatives of un-
known functions. If you find a bug in the package, or if you have a comment or a
question, please send it towillisb@unk.edu.

Thepdiff package could serve as a basis for a Maxima package differential
and integral operators.

12

