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tion for the numeri
alsolution of initial value problemsP. J. PapasotiriouDepartment of Materials S
ien
e, University of Patras, Gree
e.Copyright © 2011 Panagiotis Papasotiriou.This do
ument is released under the terms of the GNU Free Do
umentation Li
ense. Program
ode in
luded in this do
ument is released under the terms of GNU General Publi
 Li
ense. Seehttp://www.gnu.org/li
enses for details.Abstra
tIn this paper, a Maxima fun
tion for solving initial value problems is introdu
ed. The fun
tionimplements the Runge-Kutta-Fehlberg method of fourth-�fth order, providing adaptive step sizeand error 
ontrol. The syntax is dis
ussed in detail, together with several examples and pra
ti
alguidelines. Solution to sti� initial value problems is dis
ussed as well.1 Introdu
tion.Di�erential equations have been of fundamental importan
e in the appli
ation of Mathemati
s tothe physi
al s
ien
es, and their importan
e in biologi
al, so
ial, and other s
ien
es is not be un-derestimated as well. However, even simple me
hani
al systems are des
ribed mathemati
ally bydi�erential equations whi
h 
annot be solved analyti
ally, unless simplifying assumptions - some-times very unrealisti
 ones - are adopted. One 
ould safely state that �di�erential equations 
annotbe solved analyti
ally unless if. . .�, and that if. . . is the main subje
t of theoreti
al textbooks aboutdi�erential equations. In most realisti
 problems, however, the use of numeri
al methods in orderto solve the di�erential equations involved is more or less mandatory.Over the years, Runge-Kutta methods for integrating di�erential equations be
ame very popular,be
ause of their great performan
e at relatively little 
omputation e�ort. For many users, the fourth-order Runge-Kutta method is not only the �rst word on the subje
t, but the last word as well.However, a good integrator for ordinary di�erential equations should exert some adaptive 
ontrolover its own progress, making 
hanges in the integration step size as ne
essary. Although Runge-Kutta methods were originally �xed-step integrators, several improvements providing adaptive stepsize do exist. In parti
ular, methods based on a te
hnique often 
alled embedded pairs were widelyused for that purpose, be
ause of their ability to estimate an �optimal� step size with redu
ed
omputational e�ort. 1
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2 Using rkf45. 2In this paper, we introdu
e a Maxima fun
tion, named rkf45, for the numeri
al solution ofinitial value problems. The method implemented is the popular Runge-Kutta-Fehlberg fourth-�fth-order s
heme. It is able to adjust the integration step so that a predetermined a

ura
y in thesolution is a
hieved with minimum 
omputational e�ort (only six fun
tion evaluations are neededper step.) The reader 
an �nd more details about this algorithm in many Numeri
al Analysistextbooks, e.g. Nougier (2001); Brian (2006); Burden & Faires (2005); Press et al. (1992).2 Using rkf45.2.1 Syntax.Like all numeri
al algorithms for solving initial value problems, rkf45 
an only solve one or moredi�erential equations of �rst order. This is not a serious restri
tion, as a di�erential equation ofhigher order 
an be transformed to a system of �rst-order di�erential equations (Maxima simpli�esthis task as well.)In its simplest form, rkf45 is used to solve the initial value problem des
ribed by one di�erentialequation, dy
dx

= f (x, y), and one initial 
ondition, y (x0) = y0. Note that the di�erential equationshould be in the form dy
dx

= f (x, y), i.e., the right-hard side should de�ne the derivative of thedependent variable. In su
h 
ases, rkf45 
an be 
alled asrkf45(ode,fun
,initial,interval,options ) ,where ode should de�ne f (x, y) (the right-hand side of the di�erential equation to be solved,) fun
is the dependent variable (the unknown fun
tion, say y,) init is the value, y0, of the dependentvariable at the initial value of the independent variable, x0, and interval is a list of three elements.The �rst element identi�es the independent variable, while the se
ond and third elements are theinitial and �nal values of the independent variable, for instan
e [x,0,6℄. Initial value does not needto be less than �nal value, so an interval like [x,6,0℄ is also valid.If a system of di�erential equations is to be solved, rkf45 should be 
alled in the formrkf45([ode1,ode2,...℄,[fun
1,fun
2,...℄,[init1,init2,...℄,interval,options) ,where [ode1,ode2,...℄ is a list de�ning the right-hand sides of the di�erential equations, [fun
1,fun
2,...℄is the list of the dependent variables, [init1,init2,...℄ is a list de�ning the value of the depen-dent variables at the initial value of the independent variable, and interval is a list de�ning theindependent variable and the integration interval, as des
ribed above.A number of optional arguments are a

epted by rkf45:1. full_solution: A Boolean, de�ning if rkf45 should return full solution or not. If set totrue, rkf45 will return a list 
ontaining full solution at all integration points sele
ted by thealgorithm. If set to false, only the solution at the �nal point will be returned (default: true.)2. absolute_toleran
e: The desired upper bound of the error (default: 10−6.) Ea
h integrationstep is a

epted only if the lo
al estimated error is less than absolute toleran
e. If not, thestep will be reje
ted, and a new, re�ned step will be tried again, until the estimated error issmall enough.



2 Using rkf45. 33. max_iterations: The maximum number of iterations (default: 10000.)4. h_start: The initial integration step (default: one 100th of the integration interval.) Theuser does not need to 
are mu
h about that optional argument. It 
an be useful in spe
ial
ases only, and it is not absolutely ne
essary even then (see � 2.2.2 for an example.)5. report: A Boolean, de�ning if a report will be printed at exit. If set to true, rkf45 will printa report, giving details about the 
al
ulations done (default: false.)Some general remarks should be emphasized.1. The user has no a

ess to the integration steps taken; they are sele
ted automati
ally in su
ha way that the result is a

urate enough. Ea
h step taken is �optimal�, in the sense that it issu�
iently small so that estimated error is less than desired absolute_toleran
e. However,the user should remember that the algorithm only estimates the absolute error. Nevertheless,this error estimation is fairly good in most 
ases, and the a
tual absolute error is typi
ally lessthan absolute_toleran
e (see � 2.2.1 for an example.)2. absolute_toleran
e refers to absolute (not relative) a

ura
y. The default value, 10−6, maybe too high or too low, depending on the nature of the problem under 
onsideration. Forexample, it doesn't make sense to seek for a solution with absolute error less than 10−6 whenthe fun
tions [fun
1,fun
2,...℄ take typi
al values of 104 in the integration interval. Ina similar way, the default toleran
e may be too high if the fun
tions take typi
al values of
10−7. For that reason, It is always better to have an idea about the behavior of the fun
tionsinvolved in the di�erential equations (see � 2.2.3 for an example.)3. If the algorithm 
annot a
hieve an a

urate solution, it exits with a warning message. In su
h
ases, one should not blindly in
rease the maximum number of iterations. The �rst thing to doif something goes wrong is to 
he
k the di�erential equations passed to rkf45. In many 
ases,an error in [ode1,ode2,...℄, even a small one, may lead to a 
ompletely di�erent problemthan the one rkf45 is supposed to solve. Furthermore, redu
ing absolute_toleran
e is wortha try as well. Trying to get a �rst solution, perhaps less a

urate and in a more narrow interval,is a good idea if rkf45 is unable to return a solution at a �rst try. Su
h a solution 
an be usedas a guideline to get an idea of what went wrong in the �rst try, and alter optional argumentsa

ordingly, so that a more a

urate solution 
an be a
hieved.2.2 Examples.Note: Numeri
al results presented in this paper have been obtained by running the example pro-grams on a Debian GNU/Linux 64 bit system. Results obtained on a di�erent system may di�erslightly.2.2.1 One �rst-order di�erential equation.As a �rst simple example, 
onsider the initial value problem

dy

dx
+ 3xy2 −

1

x3 + 1
= 0, y (0) = 0, (1)
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al solution for problem (1).
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al output of Listing 1 (part I.)



2 Using rkf45. 5
✞ ☎load("rkf45 .ma
")$sol : rkf45(−3*x*y^2+1/(x^3+1),y,0 , [x,0 ,5℄ , report=true)$plot2d( [ dis
rete , sol ℄ , [ style , [ lines , 4 ℄ ℄ , [ psfi le ,"Example_1a. eps"℄)$x_points :map( f irst , sol )$steps : part(x_points , allbut(1))−part(x_points , allbut(length(x_points)))$x_step(x):=sum(
harfun(x_points [ i℄<=x and x<x_points [ i+1℄)*steps [ i ℄ , i ,1 ,length(steps ))$plot2d(x_step(x) , [x,0 , last (x_points)−lmin(steps )/10℄ ,[ style , [ lines ,4 ℄ ℄ ,[ 
olor ,magenta℄ , [ ylabel ,"step size" ℄ , [ psfi le ,"Example_1b. eps"℄)$y_exa
t(x):=x/(x^3+1)$errors :map(lambda( [u℄ ,abs(y_exa
t(u[1℄)−u[2 ℄)) , sol )$print("A
tual minimum error :" ,lmin(part(errors , allbut (1))))$print("A
tual maximum error :" ,lmax(errors ))$plot2d( [ dis
rete ,x_points , errors ℄ , [ logy ℄ , [ style , [ lines , 4 ℄ ℄ , [ 
olor , red ℄ ,[ ylabel ,"error" ℄ , [ psfi le ,"Example_1
. eps"℄)$
✡✝ ✆Listing 1: Maxima program for solving Eqs. (1).
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al output of Listing 1 (part II.) Absolute error in the numeri
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2 Using rkf45. 6with x ∈ [0, 5]. In fa
t, this is a Ri
atti equation, and the exa
t solution is x
x3+1

, whi
h will beused to 
he
k our results (in Maxima, the exa
t solution 
an be obtained by using the pa
kage
ontrib_ode.)Listing 1 shows the Maxima program for solving the problem numeri
ally. Note parti
ularly the
all of rkf45: rkf45(-3*x*y^2+1/(x^3+1),y,0,[x,0,5℄)(the optional argument report=true is also used in Listing 1, to get a report about 
al
ulationsdone.) Note that we needed to rewrite the di�erential equation in the form dy
dx

= −3xy2 + 1
1+x3 .Results returned by rkf45 are stored in a list, with elements in the form [x,y℄, where x is anintegration point (sele
ted by the algorithm,) and y is the value of the fun
tion y (x) at that point.Solution returned 
an be used to plot our results, as in Fig. 1a. The evolution of the step size isplotted in Fig. 1b; the algorithm uses small integration steps from x ≈ 0.5 to x ≈ 2 be
ause y (x) is
hanging rather rapidly in that interval. For x & 2, rkf45 starts to in
rease the step size, be
ausethe slope of y (x) remains small, so there is no need to use small integration steps. Note that the�rst step taken is 0.05, whi
h is a
tually the default value (re
all that default initial step is one100th of the integration interval, in this 
ase 5

100 = 0.05.) Also note that the last integration step is
onsiderably smaller than the previous ones, be
ause the �nal integration point, in this 
ase x = 5,has been rea
hed.Now, let us 
he
k the report about the 
omputations done. In this example, rkf45 gives thefollowing output, whi
h is rather typi
al.------------------------------------------------------Info: rkf45:Integration points sele
ted: 42Total number of iterations: 45Bad steps 
orre
ted: 4Minimum estimated error: 3.048850451617402E-10Maximum estimated error: 9.5960328100330727E-7Minimum integration step taken: 0.05Maximum integration step taken: 0.31667551601085------------------------------------------------------There are some interesting things in this information. First, the algorithm found that four stepswere bad. There is nothing to worry about that; it simply means that a

ura
y 
riterion wasnot satis�ed four times during the 
omputations, so that the 
orresponding integration steps werereje
ted, and rkf45 tried a new, �optimal� step instead. No step is a

epted if the estimated erroris not less than pres
ribed a

ura
y (whi
h is 10−6 in this example - the default value, as we didn'tused the optional argument absolute_toleran
e.) Se
ond, 42 integration points were sele
tedby the algorithm (in
luding the initial point.) rkf45 needed 45 iterations to solve the problem:
41 iterations for the a

epted integration points (ex
luding the initial point) plus four iterations
on
erning the bad steps, whi
h were not a

epted. Third, the minimum error reported by thealgorithm is ≈ 3.0 × 10−10 (the error is a
tually zero at the initial point, but rkf45 does not takethat point into a

ount, when 
al
ulating estimated errors.) The maximum error is estimated tobe ≈ 9.6 × 10−7, marginally lower than requested absolute error toleran
e, 10−6. In this parti
ular



2 Using rkf45. 7example, we know the exa
t solution, so the program 
an 
ompute a
tual minimum and maximumerrors, whi
h are found to be ≈ 4.6 × 10−11 and ≈ 5.9 × 10−7, respe
tively. This veri�es that ournumeri
al results are highly a

urate. In both 
ases, the algorithm overestimates the a
tual error.This is expe
ted, as every numeri
al method has no means to 
al
ulate the a
tual error; it 
an only
al
ulate the lo
al trun
ation error, as an estimation of the a
tual global error. This means that thea
tual error might be lower or even higher than the error estimated by the algorithm. However, thealgorithm tries to be 
onservative, so the di�eren
e between a
tual and estimated error should besmall and generally not signi�
ant.In this example, error estimation was a

urate enough: a
tual maximum error, ≈ 5.9× 10−7, isindeed less than 10−6, whi
h was the (default) absolute_toleran
e requested. Those remarks 
analso be veri�ed in Fig. 2
, where the absolute error as a fun
tion of x is plotted; we see that the erroris kept smaller than pres
ribed a

ura
y. It is worth mentioning here how rkf45 in
reases the initialstep, as it estimates that the error is several orders of magnitude smaller than absolute_toleran
e,so there is no need to keep integrating with su
h a small step. In general, rkf45 tries to sele
t the�optimal� step, in the sense that estimated error is kept less than pres
ribed a

ura
y, but 
lose toit. Report also gives some information about the steps taken: the algorithm needed to take severalstep sizes, varying from 0.05 to ≈ 0.317, depending on the integration point. Note that the minimumstep, 0.05, is a
tually the initial step; this is be
ause a smaller step was not needed in this parti
ularexample.2.2.2 An initial value problem with threshold e�e
t.Consider the initial value problem
dg

dt
= s− 1.51g + 3.03

g2

g2 + 1
, g (0) = 0, (2)with t ∈ [0, 100]. Here, s is a parameter. This is a mathemati
al model for a bio
hemi
al me
hanism
alled geneti
 swit
h (Brian (2006, pp. 577-579).) It is expe
ted that the solution, g (t), rea
hes anequilibrium state as t→ ∞. What is interesting in that de
eptively easy problem is that it exhibitsa so 
alled threshold e�e
t : for some 
riti
al value of s, the equilibrium state of g (t) undergoes anabrupt 
hange to a higher level.Listing 2 shows the Maxima program whi
h solves Eqs. (2) for three di�erent values of s (theprogram is simpli�ed a lot by using Maxima's fun
tion makelist.) The graphi
al output of theprogram is shown in Fig. 3 (
f. Brian (2006, Fig. 7.7).) We verify that the initial value problemexhibits the threshold e�e
t, as expe
ted by the theory. The 
riti
al value, s = sc, is somewherebetween s = 0.202 and s = 0.204 (we 
an easily 
ompute the exa
t value of sc in Maxima, but thisis out of the s
ope of this paper.) Now, let us examine how rkf45 rea
ts on the threshold e�e
t. Inthe s = 0.202 
ase, rkf45 reports------------------------------------------------------Info: rkf45:Integration points sele
ted: 24Total number of iterations: 24Bad steps 
orre
ted: 1Minimum estimated error: 8.9798104760311307E-9
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✞ ☎load("rkf45 .ma
")$t_start :0$ t_end:100$sol :makelist(rkf45(equ,g ,0 , [ t , t_start ,t_end℄ , report=true ) ,equ ,makelist(s−1.51*g+3.03*g^2/(1+g^2),s ,[0.206 ,0.204 ,0.202℄))$plot2d(makelist ( [ dis
rete , s ℄ , s , sol ) , [ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t"℄ ,[ ylabel ,"g(t)" ℄ , [ legend ,"s=0.206" ,"s=0.204" ,"s=0.202"℄ ,[gnuplot_preamble ,"set key le f t" ℄ , [ psfi le ,"Example_2a. eps"℄)$sol206: rkf45(0.206−1.51*g+3.03*g^2/(1+g^2),g ,0 , [ t , t_start ,t_end℄ ,absolute_toleran
e=5e−8, report=true)$plot2d( [ dis
rete , sol206 ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t"℄ ,[ ylabel ,"g(t)" ℄ , [ legend ,"s=0.206, rkf45 results"℄ ,[gnuplot_preamble ,"set key bottom right" ℄ , [ psfi le ,"Example_2b. eps"℄)$sol206_rk : rk(0.206−1.51*g+3.03*g^2/(1+g^2),g,0 ,[ t , t_start ,t_end,(t_end−t_start)/(length(sol206)−1)℄)$plot2d( [ dis
rete , sol206_rk ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ ,[ ylabel ,"g(t)" ℄ , [ legend ,"s=0.206, rk results"℄ ,[gnuplot_preamble ,"set key bottom right" ℄ , [ psfi le ,"Example_2
. eps"℄)$
✡✝ ✆Listing 2: Maxima program for solving Eqs. (2) for three di�erent values of the parameter s.
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Fig. 3: Graphi
al output of Listing 2 (part I.)Maximum estimated error: 3.870532540022239E-7Minimum integration step taken: 0.15874561265253Maximum integration step taken: 19.17485694258996------------------------------------------------------We see that 24 integration steps were sele
ted to solve the problem. What is interesting here is thatone bad step was found, reje
ted, and re�ned. It is easy to �gure out why that bad step o

ured. Bydefault, the initial step is set to one 100th of the integration interval, in this 
ase 1. Apparently, thatstep was too big to get an a

urate solution near t = 0, where the value of g (t) is 
hanging rapidly.We 
an easily verify this is the 
ase by using the optional argument h_start to set a smaller valuefor the initial step, say h_start=0.2, and run the program again: we get almost the same results,but this time no bad steps are reported in the s = 0.202 
ase. It is not really needed to 
hange theinitial step manually, but it is a good example on how optional argument h_start 
an be used toinvestigate what happened in some spe
ial 
ases.Now let us 
ompare this report with the 
orresponding report for s = 0.206:------------------------------------------------------Info: rkf45:Integration points sele
ted: 62Total number of iterations: 75Bad steps 
orre
ted: 14Minimum estimated error: 1.3371075149203189E-12



2 Using rkf45. 10Maximum estimated error: 8.6197147915565898E-7Minimum integration step taken: 0.15685566484769Maximum integration step taken: 7.845262303547721------------------------------------------------------This time, 14 bad steps needed to be 
orre
ted. This is be
ause of the high slope of the solution,whi
h for
ed rkf45 to re�ne the step several times, due to the rapid 
hanges in g (t). What is moreinteresting here is the fa
t that 62 integration points were sele
ted, about 2.5 times more than inthe s = 0.202 
ase. This is how the algorithm rea
ts to the threshold e�e
t. Solution for s = 0.206is above the 
riti
al value, sc. The high slope of g (t) between t ≃ 30 and t ≃ 50 was dete
ted by thealgorithm, and it rea
ted by taking more, smaller integration steps, in order to keep the estimatederror as small as required; in fa
t, about 42% of the total integration points lie in t ∈ [30, 50]. Thisis a typi
al behavior for adaptive step size methods, and the main reason they are widely used. One
an easily imagine what would happen if we used a �xed-size method to solve this problem: thealgorithm would not 
are about the abrupt 
hange in g (t), and it is left to the user to guess howmany integration steps should be taken to get an a

urate solution.In order to examine the behavior of rkf45 
ompared to that of a �xed step size method, wesolve the problem for s = 0.206 again, this time with absolute toleran
e set to 5× 10−8, so that atleast seven de
imal digits should be a

urate. Report in this 
ase reveals that rkf45 sele
ted moreintegration points than before:------------------------------------------------------Info: rkf45:Integration points sele
ted: 110Total number of iterations: 122Bad steps 
orre
ted: 13Minimum estimated error: 7.5714731382439109E-17Maximum estimated error: 4.8700547655067209E-8Minimum integration step taken: 0.036668228503785Maximum integration step taken: 5.760239986218677------------------------------------------------------We see that 110 points were sele
ted, instead of 62 points, if a

ura
y is set to default, 10−6. Asexpe
ted, the error in 
omputations is lower; maximum error is now estimated to be ≈ 4.9 × 10−8,
ompared to ≈ 8.6× 10−7 in the previous 
ase.We now solve the problem for s = 0.206 using Maxima's fun
tion rk, whi
h is a �xed-step,fourth-order Runge-Kutta method. We set the �xed step size so that rk uses 110 integration points(same as in the rkf45 
ase above.) Fig. 4 shows our results graphi
ally, and it is easy to see thedi�eren
e between adaptive and �xed step size methods. An adaptive step size method sele
ts manyintegration points in the steep parts of the 
urve, and only a few points in the rest. On the 
ontrary,a �xed step size method just uses the same step size everywhere, regardless of the slope of the 
urve.In this example, rkf45 sele
ted ≈ 49% of the total integration points in the most steep part of the
urve, t ∈ [30, 50], while rk used only 20% of the total points in the same interval. On the otherhand, for t > 50, rkf45 sele
ted ≈ 23% of the total integration points, while rk used 50% of thetotal points; most of them are a
tually wasted 
omputations, sin
e fun
tion g (t) pra
ti
ally rea
hesan equilibrium state soon after t = 50. Note that rkf45 
ould sele
t even less integration points in



2 Using rkf45. 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  20  40  60  80  100

g

t

s=0.206, rkf45 results(a) Numeri
al solution obtained by rkf45. A

ura
y is set to 5× 10−8.
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✞ ☎load("rkf45 .ma
")$k1:0.4*8.8/62/0.03$ k2:0.5*8.8/139/0.2/0.003$ k3:0.4*8.8/139/0.2/0.003$t_start :0$ t_end:2$sol : rkf45 ( [k1*(C−L) ,k2*(32−C)+k3*(L−C) ℄ , [L,C℄ ,[150 ,150℄ , [ t , t_start ,t_end℄ ,report=true)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"time (hours)" ℄ , [ ylabel ,"temperature (F)"℄ ,[ legend ,"liquid , L(t)" ,"
ontainer , C(t)" ℄ , [ psfi le ,"Example_3a. eps"℄)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ , [ x,0 ,0.3℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ , [ xlabel ,"time (hours)"℄ ,[ ylabel ,"temperature (F)" ℄ , [ legend ,"liquid , L(t)" ,"
ontainer , C(t)" ℄ ,[ psfi le ,"Example_3b. eps"℄)$
✡✝ ✆Listing 3: Maxima program for solving Eqs. (3).that region, but algorithm implementation is rather 
onservative, and does not allow too big stepsize 
hanges.2.2.3 A system of two �rst-order di�erential equations.In this se
tion we shall see how to use rkf45 in order to solve a system of two �rst-order di�erentialequations with respe
t to two initial 
onditions,

{

dL
dt

= k1 (C − L)
dC
dt

= k2 (32− C) + k3 (L− C)
,

{

L (0) = 150
C (0) = 150

, (3)with t ∈ [0, 2]. Eqs. (3) des
ribe the 
ooling of a 
ontainer and its liquid 
ontains. Here, t is thetime, L, C are the temperatures of the liquid and its 
ontainer, respe
tively, and k1, k2, k3 are
onstants (see Brian (2006, pp. 626-627) for details.) Listing 3 shows the Maxima program used tosolve the problem. Noti
e how rkf45 is 
alled in this 
ase,rkf45([k1*(C-L),k2*(32-C)+k3*(L-C)℄,[L,C℄,[150,150℄,[t,t_start,t_end℄)(we also used the optional argument report=true in Listing 3, to get an idea of the 
al
ulationsdone.) Result is stored in a list, with elements in the form [t,L,C℄, where t is the integration point,and L, C are the values of the fun
tions L and C at t. The graphi
al output of the program is shownin Fig. 5 (
f. Brian (2006, Fig. 7.16).) Note parti
ularly that the 
ontainer is 
ooled mu
h faster thatits liquid 
ontents, and fun
tion C (t) is de
reasing rapidly in the beginning. In this 
ase, reportprinted by rkf45 is as follows------------------------------------------------------Info: rkf45:
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✞ ☎load("rkf45 .ma
")$t_start :0$ t_end:20$ mu:4$equ : ' d i f f (x, t,2)+mu*(x^2−1)*'d i f f (x, t)+x=0$equ2 : [ ' d i f f (x1, t)=x2,ev(solve(equ , ' d i f f (x, t ,2)) [1 ℄ , ' d i f f (x, t ,2)='di f f (x2, t ) ,' d i f f (x, t)=x2,x=x1) ℄ ;equ2 :map(rhs ,equ2) ;sol : rkf45(equ2 , [ x1,x2 ℄ , [0 .75 ,0 ℄ , [ t , t_start ,t_end℄ , report=true)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t ) , x'( t)" ℄ ,[ legend ,"x(t)" ,"x'( t)" ℄ , [ psfi le ,"Example_4a. eps"℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [2 ,3 ℄ )) , sol ) ℄ , [ style , l ines [4 ℄ ℄ ,[ 
olor ,magenta℄ , [ xlabel ,"x" ℄ , [ ylabel ,"x'" ℄ , [ psfi le ,"Example_4b. eps" ℄)$
✡✝ ✆Listing 4: Maxima program for solving Eqs. (5).Integration points sele
ted: 316Total number of iterations: 332Bad steps 
orre
ted: 17Minimum estimated error: 5.4650657325752074E-8Maximum estimated error: 9.7738230565866937E-7Minimum integration step taken: 1.6519396700522609E-4Maximum integration step taken: 0.044380874549758------------------------------------------------------We see that the algorithm sele
ted 316 integration points in this 
ase, mu
h more than in previousexamples. This is be
ause a very small step was needed for small t, due to the rapidly de
reasingfun
tion C (t), and be
ause of the high a

ura
y required. In fa
t, 234 out of 316 points (about
74%) were needed for a small time interval, from t = 0 to t = 0.1 (5% of the total time interval.)This fa
t is more pronoun
ed in 5b. Furthermore, the fa
t we solved the problem using defaulta

ura
y, 10−6, is an exaggeration, 
onsidering that C (t) & 40 ◦F. We 
an therefore safely redu
ethe a

ura
y needed to a more plausible value, say 5× 10−3, so that results should still be a

urateto at least two de
imal digits. Indeed, adding a

ura
y=5e-3 in the 
all of rkf45 would redu
e theintegration points to 93 (≈ 3.4 times less than above,) without any noti
eable loss of a

ura
y.2.2.4 A se
ond-order di�erential equation: the van der Pol equation.As an example of a se
ond-order di�erential equation, we shall solve the initial value problem de-s
ribed by the well-known van der Pol equation and two initial 
onditions (see, e.g., Hairer et al.(1993, � I.16), Hairer & Wanner (2002, Eq. 1.5), Brian (2006, Example 7.28))

dx2

dt2
+ µ

(

x2 − 1
) dx

dt
+ x = 0,

{

x (0) = 0.75
dx
dt

∣

∣

x=0
= 0

, (4)
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al output of Listing 4.where t ∈ [0, 20], and µ is a positive parameter. This is an os
illator with non-linear dumping; whatmakes this problem interesting is exa
tly the damping term, µ (x2 − 1
)

dx
dt
. For |x| > 1, the damping
oe�
ient, µ (x2 − 1

), is positive, and thus the damping term a
ts as fri
tion or resistan
e, drainingenergy from the system. However, if |x| < 1 the damping 
oe�
ient is negative, and the term a
tsas �negative resistan
e�, supplying energy to the system. From a 
omputational point of view, thedumping parameter, µ, is 
ru
ial; a small value of µ makes the damping term negligible, and theproblem is very easy to solve. On the other hand, a higher value of µ makes the problem sti�, andthus mu
h harder to solve numeri
ally. In this example, we take µ = 4, a rather small value.The initial value problem (4) 
an be solved by transforming the original se
ond-order equationto a system of two �rst-order di�erential equations. This 
an done by putting x = x1, dxdt = x2 (and,
onsequently, dx2
dt2

= dx2
dt
). so that Eqs. (4) are now written as

{

dx1
dt

= x2
dx2
dt

= −µ
(

x21 − 1
)

x2 − x1
,

{

x1 (0) = 0.75
x2 (0) = 0

. (5)Transformation 
an be easily done in Maxima, as shown in Listing 4. Eqs. (5) 
an now be solved byrkf45. just as any other system of �rst-order di�erential equations. Solution is returned as a list,with elements in the form [t,x1,x2℄, where t is the integration point, and x1, x2 are the values ofthe fun
tions x1, x2 (or, equivalently, x, dxdt ) at that point. Graphi
al output of the Maxima program4 is shown in Fig. 6, where the non-linear os
illatory nature of the solution is apparent (
f., e.g.,Brian (2006, Fig. 7.18).)In this example, the absolute toleran
e is set to 10−6 (the default value,) and the report returnedby rkf45 is as follows.------------------------------------------------------Info: rkf45:Integration points sele
ted: 632Total number of iterations: 652Bad steps 
orre
ted: 21



2 Using rkf45. 16Minimum estimated error: 2.839347393139819E-8Maximum estimated error: 9.914713641306354E-7Minimum integration step taken: 0.0068707778178574Maximum integration step taken: 0.10198351520456------------------------------------------------------Here 632 integration points were sele
ted, and the maximum estimated error is ≈ 9.9 × 10−7. Thehigh number of integration points is 
aused by the slopes of the 
urves, espe
ially dx
dt

(see Fig. 6a.)Although 
omputation time is not an issue in this example, 
omputations needed 
an be redu
ed
onsiderably by redu
ing absolute_toleran
e. For example, if four a

urate de
imal digits areenough, we 
an set absolute_toleran
e=5e-5, and rkf45 would now need 252 points; that is,
omputations needed would be redu
ed by about 60%, but the result would still be very 
lose towhat we get with more than double the 
omputational e�ort.2.2.5 A system of two se
ond order di�erential equations: the double pendulum.The double pendulum is a simple physi
al system 
onsisting of one pendulum atta
hed to another.Despite its simpli
ity, it exhibits ri
h dynami
 behavior, varying from a simple linear system to a
haoti
 system. One 
an easily derive the Lagrangian and the equations of motion using Maxima,but we shall 
on
entrate on the result of that algebra, whi
h is two 
oupled se
ond-order di�erentialequations; together with four initial 
onditions, they form the initial value problem,














d2θ1
dt2

=
−g(2m1+m2) sin θ1−m2g sin(θ1−2θ2)−2 sin(θ1−θ2)m2

(

(

dθ2

dt

)

2

ℓ2+
(

dθ1

dt

)

2

ℓ1 cos(θ1−θ2)

)

ℓ1(2m1+m2−m2 cos(2θ1−2θ2))

d2θ2
dt2

=
2 sin(θ1−θ2)

(

(

dθ1

dt

)

2

ℓ1(m1+m2)+g(m1+m2) cos θ1+
(

dθ2

dt

)

2

ℓ2m2 cos(θ1−θ2)

)

ℓ2(2m1+m2−m2 cos(2θ1−2θ2))

, (6)
θ1 (0) =

π

8
, θ2 (0) =

π

4
,

dθ1
dt

∣

∣

∣

∣

t=0

= 0,
dθ2
dt

∣

∣

∣

∣

t=0

= 0, (7)where g is is the lo
al a

eleration of gravity, m1, m2 are the two masses, ℓ1, ℓ2 are the lengths ofthe two rods, and θ1, θ2 are the angles that ea
h pendulum swings away from verti
al downwards(as usual, 
ounter-
lo
kwise angles are positive.) In order to solve this problem numeri
ally, we needto transform Eqs. (6) to a system of four �rst-order di�erential equations, and transform the initial
onditions (7) a

ordingly. The pro
edure is similar to that of � 2.2.4: We put dθ1
dt

= ω1, dθ2dt = ω2(angular velo
ities of the two rods,) and, 
onsequently, d2θ1
dt2

= dω1

dt
, d2θ2
dt2

= dω2

dt
, so that the problemis now written as























dθ1
dt

= ω1
dθ2
dt

= ω2

dω1

dt
=

−g(2m1+m2) sin θ1−m2g sin(θ1−2θ2)−2 sin(θ1−θ2)m2(ω2

2
ℓ2+ω2

1
ℓ1 cos(θ1−θ2))

ℓ1(2m1+m2−m2 cos(2θ1−2θ2))

dω2

dt
=

2 sin(θ1−θ2)(ω2

1
ℓ1(m1+m2)+g(m1+m2) cos θ1+ω2

2
ℓ2m2 cos(θ1−θ2))

ℓ2(2m1+m2−m2 cos(2θ1−2θ2))

, (8)
θ1 (0) =

π

8
, θ2 (0) =

π

4
, ω1 (0) = 0, ω2 (0) = 0. (9)The Maxima program that solves this problem is shown in Listing 5. The program is quitesimilar than the previous ones (it is more lengthy mainly be
ause several quantities are plotted.)
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✞ ☎load("rkf45 .ma
")$m1:1$ m2:1.5$ l1 :0.4$ l2 :0.6$ g:9.81$ t_start :0$ t_end:8$d2th1dt2:(−g*(2*m1+m2)*sin(th1)−m2*g*sin(th1−2*th2)

−2*sin(th1−th2)*m2*( ' d i f f (th2 , t)^2*l2+'di f f (th1 , t)^2*l1*
os(th1−th2)))/(l1*(2*m1+m2−m2*
os(2*th1−2*th2)))$d2th2dt2:(2* sin(th1−th2)*( ' d i f f (th1 , t)^2*l1*(m1+m2)+g*(m1+m2)*
os(th1)+'di f f (th2 , t)^2*l2*m2*
os(th1−th2)))/(l2*(2*m1+m2−m2*
os(2*th1−2*th2)))$equs :ev ( [omega1,omega2,d2th1dt2,d2th2dt2℄ , ' d i f f (th1 , t)=omega1,' d i f f (th2 , t)=omega2) ;th1_start : f loat(%pi/8)$ th2_start : f loat(%pi/4)$ omega1_start:0$ omega2_start:0$sol : rkf45(equs , [ th1 , th2 ,omega1,omega2℄ ,[ th1_start , th2_start ,omega1_start,omega2_start ℄ , [ t , t_start ,t_end℄ ,report=true)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t (s)" ℄ , [ ylabel ,"angle (rad)" ℄ ,[ legend ,"{/Symbol q}_1(t)" ,"{/Symbol q}_2(t)"℄ ,[ psfi le ,"Example_5a. eps"℄)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,4 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,5 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t (s)" ℄ , [ ylabel ,"angular veli
ity (rad/s)" ℄ ,[ legend ,"{/Symbol w}_1(t)" ,"{/Symbol w}_2(t)"℄ ,[ psfi le ,"Example_5b. eps"℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [2 ,3 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol q}_1 (rad)" ℄ , [ ylabel ,"{/Symbol q}_2 (rad)"℄ ,[ 
olor ,magenta℄ , [ legend , false ℄ , [ psfi le ,"Example_5
. eps" ℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [4 ,5 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol w}_1 (rad/s)" ℄ , [ ylabel ,"{/Symbol w}_2 (rad/s)" ℄ ,[ 
olor ,magenta℄ , [ legend , false ℄ , [ psfi le ,"Example_5d. eps" ℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [2 ,4 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol q}_1 (rad)" ℄ , [ ylabel ,"{/Symbol w}_1 (rad/s)"℄ ,[ 
olor , green ℄ , [ legend , false ℄ , [ psfi le ,"Example_5e. eps"℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [3 ,5 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol q}_2 (rad)" ℄ , [ ylabel ,"{/Symbol w}_2 (rad/s)"℄ ,[ 
olor , green ℄ , [ legend , false ℄ , [ psfi le ,"Example_5f. eps"℄)$
✡✝ ✆Listing 5: Maxima program for solving Eqs. (8-9).
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2 Using rkf45. 19In this parti
ular example, we take m1 = 1kg, m2 = 1.5 kg, ℓ1 = 0.4m, ℓ2 = 0.6m, and g =
9.81m/s2. Transformation from Eqs. (6-7) to Eqs. (8-9) and numeri
al solution via rkf45 is similarto that in Listing. 4. The transformed system is solved by rkf45 as a system of four �rst-orderdi�erential equations (for t ∈ [0, 8].) Solution is returned as a list, with elements in the form[t,th1,th2,omega1,omega2℄, where t is the integration point, and th1, th2, omega1, omega2 arethe values of the fun
tions θ1, θ2, ω1, ω2 at that point. Using that information, the program 
reatesseveral plots, shown in Fig. 7. Report returned by rkf45 shows that 845 integration points wereused: ------------------------------------------------------Info: rkf45:Integration points sele
ted: 845Total number of iterations: 877Bad steps 
orre
ted: 33Minimum estimated error: 2.350379310893348E-8Maximum estimated error: 9.7924074620423794E-7Minimum integration step taken: 0.0056717734638438Maximum integration step taken: 0.01858201039005------------------------------------------------------The maximum error is estimated to be ≈ 9.8 × 10−7. As in the previous example, setting a

ura
yto 5× 10−5, redu
es the number of integration points by about 60%.2.2.6 The Pleiades problem.The Pleiades problem is an arti�
ial 
elestial me
hani
s problem of seven stars moving in the sameplane. Mathemati
ally, it is des
ribed by a system of 14 se
ond-order di�erential equations, togetherwith 28 initial 
onditions, de�ning initial position and velo
ity for ea
h 
elestial body. The problemis not sti�, but it is 
omplex enough. Be
ause of its 
omplexity, it is in
luded in several 
olle
tionsof test problems for ordinary di�erential equation solvers (see, e.g., Mazzia & Magherini (2008);Nowak et al. (2010).) Traditionally, the problem is solved for seven 
elestial obje
ts, apparently asa simple simulation of the well-known Pleiades star 
luster. However, the problem 
an be easilyexpanded for any number of obje
ts, not ne
essarily in the same plane. In this paper we shall useformulation and data taken from Hairer et al. (1993), as all 
olle
tions of test problems do.For every obje
t in the plane, position is de�ned by the ve
tor fun
tion −→ri = xi−→ux + yi−→uy, where
i = 1, . . . , 7, and −→ux, −→uy are the unit ve
tors along the x− and y−axis, respe
tively. Similarly,velo
ity is de�ned by the ve
tor fun
tions and d

−→ri
dt

= dxi
dt

−→ux +
dyi
dt
−→uy. The unknown fun
tions of theproblem are xi, yi, dxidt , dyidt for i = 1, . . . , 7, and they are all fun
tions of time, t. It is easy to derivethe 14 equations of motion for su
h a system; together with the initial 
onditions generally adoptedin all similar tests, they form the initial value problem







d2xi
dt2

=
∑

j 6=imj (xi − xj) /r
3

2

ij

d2yi
dt2

=
∑

j 6=imj (yi − yj) /r
3

2

ij

,























xi (0) = [3, 3,−1,−3, 2,−2, 2]T

yi (0) = [3,−3, 2, 0, 0,−4, 4]T

dxi
dt

∣

∣

∣

t=0
= [0, 0, 0, 0, 0, 1.75,−1.5]T

dyi
dt

∣

∣

∣

t=0
= [0, 0, 0,−1.25, 1, 0, 0]T

, (10)
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✞ ☎load("rkf45 .ma
")$fx( i ):=sum( i f j#i then j*(
on
at(x, j)−
on
at(x, i ))/((
on
at(x, i)−
on
at(x, j))^2+(
on
at(y, i)−
on
at(y, j ))^2)^1.5else 0 , j ,1 ,7)$fy( i ):=sum( i f j#i then j*(
on
at(y, j)−
on
at(y, i ))/((
on
at(x, i)−
on
at(x, j))^2+(
on
at(y, i)−
on
at(y, j ))^2)^1.5else 0 , j ,1 ,7)$equs : flatten ( [makelist(
on
at(dx, i ) , i ,1 ,7) ,makelist(
on
at(dy, i ) , i ,1 ,7) ,makelist( fx( i ) , i ,1 ,7) ,makelist(fy( i ) , i ,1 ,7) ℄)$fun
s : flatten ( [makelist(
on
at(x, i ) , i ,1 ,7) ,makelist(
on
at(y, i ) , i ,1 ,7) ,makelist(
on
at(dx, i ) , i ,1 ,7) ,makelist(
on
at(dy, i ) , i ,1 ,7) ℄)$init :[3 ,3,−1,−3,2,−2,2,3,−3,2,0,0,−4,4,0,0,0,0,0,1.75,−1.5,0,0,0,−1.25,1,0,0℄$t_start :0$ t_end:3$sol : rkf45(equs , fun
s , init , [ t , t_start ,t_end℄ , report=true)$initial_points : [ dis
rete ,makelist ( [ init [ i ℄ , init [ i+7℄℄ , i ,1 ,7)℄$traje
tories :makelist ( [ dis
rete ,map(lambda( [u℄ , part(u,[1+i ,8+i ℄ )) , sol ) ℄ , i ,1 ,7)$styles :append( [ style ℄ ,makelist ( [ lines ,4 ℄ , i ,1 ,7) , [ points ℄ )$
olors : [ 
olor , red , green , blue ,magenta,
yan, yellow ,bla
k ℄$legends :append( [ legend ℄ ,makelist(s
on
at("Body " , i ) , i ,1 ,7) , ["" ℄)$plot2d(end
ons( initial_points , traje
tories) , styles , [ point_type , 
ir
le ℄ ,end
ons(bla
k , 
olors ) , [ xlabel ,"x" ℄ , [ ylabel ,"y"℄ , legends ,[ psfi le ,"Example_6a. eps"℄)$plot2d(makelist ( [ dis
rete ,map(lambda( [u℄ , part(u,[1,1+ i ℄ )) , sol ) ℄ , i ,1 ,7) , styles ,
olors , [ xlabel ,"t" ℄ , [ ylabel ,"x_i (t)" ℄ , legends ,[ psfi le ,"Example_6b. eps"℄)$plot2d(makelist ( [ dis
rete ,map(lambda( [u℄ , part(u,[1,8+ i ℄ )) , sol ) ℄ , i ,1 ,7) , styles ,
olors , [ xlabel ,"t" ℄ , [ ylabel ,"y_i (t)" ℄ , legends ,[ psfi le ,"Example_6
. eps"℄)$
✡✝ ✆Listing 6: Maxima program for solving Eqs. (11).
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3 Sti� initial value problems. 22where mj are the masses of the obje
ts, and rij = (xi − xj)
2 + (yi − yj)

2. In this example, we take
mj = j, and the problem is solved for t ∈ [0, 3].In order to solve Eqs. (10), we need to transform the se
ond-order di�erential equations to asystem of �rst-order di�erential equations. This is easily done by putting dxi

dt
= χi, dyidt = ψi, so thatEqs. (10) are now written as























dxi
dt

= χi
dyi
dt

= ψi
dχi

dt
=

∑

j 6=imj (xi − xj) /r
3

2

ij

dψi

dt
=

∑

j 6=imj (yi − yj) /r
3

2

ij

,



















xi (0) = [3, 3,−1,−3, 2,−2, 2]T

yi (0) = [3,−3, 2, 0, 0,−4, 4]T

χi (0) = [0, 0, 0, 0, 0, 1.75,−1.5]T

ψi (0) = [0, 0, 0,−1.25, 1, 0, 0]T

. (11)Listing 6 shows the Maxima program for solving the initial value problem (11). It is worth mentioninghere that Maxima o�ers the ability to de�ne the set of di�erential equations in a very elegant way,using built-in fun
tions 
on
at and makelist. rkf45 returns the solution as a list, with elements inthe form [t,x1,...,x7,y1,...,y7,dx1,...,dx7,dy1,...,dy7℄, where t is the integration point,and x1,...,x7, y1,...,y7, dx1,...,dx7, dy1,...,dy7 are the values of the fun
tions xi, yi, χi =
dxi
dt
, ψi = dyi

dt
at that point. Graphi
al output of the program is shown in Fig. 8. Report of rkf45is as follows.------------------------------------------------------Info: rkf45:Integration points sele
ted: 1143Total number of iterations: 1144Bad steps 
orre
ted: 2Minimum estimated error: 3.8961905793680196E-8Maximum estimated error: 9.8286131077889909E-7Minimum integration step taken: 2.5152068765271884E-5Maximum integration step taken: 0.065073956846732------------------------------------------------------The algorithm sele
ted 1143 integration points. In a modern personal 
omputer, rkf45 solvesthe above problem in somewhat less than eight se
onds. Compared to previous examples, this
omputation time is at least seven times larger. This is expe
ted, 
onsidering the fa
t we are solvinga set of 28 non-linear di�erential equations; the term r

− 3

2

ij =
(

(xi − xj)
2 + (yi − yj)

2
)− 3

2 , involved in
14 di�erential equations, is also a reason of the larger 
omputation time. As in previous examples,redu
ing a

ura
y, even slightly, would redu
e 
omputation time 
onsiderably. For example, settingabsolute toleran
e to 5× 10−5 redu
es integration points and 
omputation time by about 62%.3 Sti� initial value problems.3.1 General dis
ussion.Although a single, pre
ise de�nition of �sti�ness� does not exist, an initial value problem is generally
onsidered as sti� if expli
it numeri
al methods either work very slowly, or they don't work atall, be
ause the integration step needs to be so small that it is pra
ti
ally impossible to solve the
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h a small step size is ne
essary not to a
hieve a

ura
y requirements, but be
ausenumeri
al integration be
omes unstable otherwise, giving 
ompletely erroneous results. In otherwords, the step size is di
tated by stability requirements rather than by a

ura
y requirements. Themost 
ommon reason for this behavior is a set of di�erential equations where the derivatives of theunknown fun
tions depend on the fun
tions themselves in a very strong way. Typi
ally, this meansthat solution may vary rather slowly in the majority of the integration interval, but there is at leastone region, often very narrow, where fun
tions vary rapidly, or even extremely rapidly, in very sti�problems. Another reason of sti�ness might be unusual initial 
onditions; the reader 
an �nd adetailed analysis of the term �sti�ness� in Hairer & Wanner 2002.It is worth emphasizing that not all di�
ult problems are sti�, but all sti� problems are di�
ultfor solvers not spe
i�
ally designed for them. Spe
ial methods, designed for solving sti� di�erentialequations, do exist in the literature; most notably, methods based on the ba
kward di�erentiationformula, also 
alled Gear methods, are known to work very well on sti� problems. More sophisti
atedalgorithms, able to swit
h from non-sti� to sti� mode and vi
e versa, do exist as well. For example,the pa
kage ODEPACK (Hindmarsh (1983)) is an ex
ellent 
olle
tion of Fortran solvers for bothnon-sti� and sti� initial value problems. Among them, the LSODAR solver (and its double-pre
isionversion, DLSODAR) swit
hes automati
ally between non-sti� and sti� methods (Petzold (1983).)In addition, DLSODAR is able to �nd the root of at least one of a set of 
onstraint fun
tions of theindependent and dependent variables, and stop integration at that point; this feature is parti
ularlyuseful for solving initial value problems where the domain of integration is not known in advan
e(see, e.g., Papasotiriou et al. (2007).)rkf45 is an expli
it Runge-Kutta method, and, as su
h, it is not spe
i�
ally designed for solvingsti� di�erential equations. Its ability to adapt the step size makes it 
apable to deal with su
hdi�
ult problems, at least in several 
ases. However, as all expli
it methods, and despite its adaptivestep size, rkf45 still needs many integration steps to solve a sti� problem, while a spe
ial method,designed to solve sti� systems, would need mu
h less integration points to a
hieve the same a

ura
y(but at higher 
omputational 
ost per step.) Consequently, rkf45, as every other expli
it method, isnot the method of 
hoi
e for solving sti� problems. That being said, and given the la
k of a betterway to solve sti� initial value problems in Maxima, we shall give some examples of su
h problems,and show how they 
an be solved by rkf45.3.2 Examples of sti� problems.3.2.1 One �rst-order di�erential equation.A well-known example, whi
h 
an be used to demonstrate the meaning of sti�ness, is the initialvalue problem
dy

dx
= y2 − y3, y (0) = δ, x ∈

[

0,
2

δ

]

, (12)sometimes 
alled Shampine's ball of �ame. This problem might seem simple, but it is not. Theparameter δ plays a 
ru
ial role on the sti�ness of the problem. High values of δ make the problemnon-sti�, and easy to solve numeri
ally. However, as δ is de
reasing the problem be
omes sti�er, andeventually mu
h more di�
ult to solve. Listing 7 shows a Maxima program that solves the problemfor two representative values of δ: (a) δ = 0.01 (mildly sti�) and (b) δ = 0.00001 (very sti�.) Inboth 
ases, the absolute toleran
e is set to 5× 10−8.
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✞ ☎load("rkf45 .ma
")$x_start:0$d:0.01$ x_end:2/d$sol_nonstiff : rkf45(ŷ 2−y^3,y,d , [ x,x_start ,x_end℄ , absolute_toleran
e=5e−8,report=true)$plot2d( [ dis
rete , sol_nonstiff ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ psfi le ,"Stiff_1a . eps"℄)$y
onst : part(sol_nonstiff ,sublist_indi
es(sol_nonstiff ,lambda( [u℄ ,abs(1−u[2℄)<5e−6)))$print("Solution is essentially 
onstant for x >" ,y
onst [1 ℄ [ 1 ℄ ) $print(length(y
onst) ,"integration points were sele
ted in that region .")$d:0.00001$ x_end:2/d$sol_stiff : rkf45(ŷ 2−y^3,y,d , [ x, x_start ,x_end℄ , absolute_toleran
e=5e−8,max_iterations=40000,report=true)$plot2d( [ dis
rete , sol_stiff ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ psfi le ,"Stiff_1b. eps" ℄)$y
onst : part( sol_stiff , sublist_indi
es( sol_stiff ,lambda( [u℄ ,abs(1−u[2℄)<5e−6)))$print("Solution is essentially 
onstant for x >" ,y
onst [1 ℄ [ 1 ℄ ) $print(length(y
onst) ,"integration points were sele
ted in that region .")$
✡✝ ✆Listing 7: Maxima program for solving Eqs. (12).
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3 Sti� initial value problems. 26In Fig. 9a, the solution for δ = 0.01 is plotted. There is nothing really surprising in this 
ase;the plot is qualitatively the same as in Fig. 4a. rkf45 takes very small steps where it is needed,i.e., at the part of the 
urve where the slope is high; on the other hand, the step size is mu
h largerwhere solution y (x) varies slowly. The fa
t that the problem is not very sti� is also apparent in thereport returned by rkf45:------------------------------------------------------Info: rkf45:Integration points sele
ted: 100Total number of iterations: 118Bad steps 
orre
ted: 19Minimum estimated error: 1.8451422293479214E-13Maximum estimated error: 4.8629641270472728E-8Minimum integration step taken: 0.16629844052309Maximum integration step taken: 32.0------------------------------------------------------Here, minimum integration step taken is ≈ 0.17, and apparently 
orresponds to the interval where
y (x) varies qui
kly. On the other hand, maximum integration step taken is 32, 
orresponding tohigher values of x, where the step size does not need to be small. To make things more quantitative,a few 
ommands were added in Listing 7, in order to 
ompute how many integration points weretaken for the part of the 
urve where |1− y (x)| ≤ 5 × 10−6. We see that, for δ = 0.01, solutionis essentially 
onstant for x & 117, and rkf45 sele
ted 29 integration points in that region (29% ofthe total integration points,) whi
h is rather more than what was expe
ted; however, as it has beenpointed out already, the algorithm is generally 
onservative, and avoids too big step size 
hanges.To 
on
lude, all the fa
ts mentioned above are more or less expe
ted; there is nothing really unusualin the solution for δ = 0.01.Fig. 9b shows the solution for δ = 0.00001, and it is obvious that something is wrong in this
ase. The algorithm sele
ts only a few integration points in the beginning, and mu
h more pointswhere y (x) varies qui
kly; this is normal and expe
ted. However, rkf45 keeps using a very smallintegration step, even for higher values of x, where y (x) is essentially 
onstant, and equal to 1. Thereis no apparent reason for this behavior; a few steps should be more than enough in this interval.This is not a bug in rkf45, however; it is a dire
t 
onsequen
e of sti�ness.Let us examine what happened more thoroughly. This is what rkf45 reports about the 
ompu-tations:------------------------------------------------------Info: rkf45:Integration points sele
ted: 30247Total number of iterations: 35205Bad steps 
orre
ted: 4959Minimum estimated error: 1.9654044991423955E-19Maximum estimated error: 4.998424021413516E-8Minimum integration step taken: 0.16632940865998Maximum integration step taken: 51200.0------------------------------------------------------
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ase. However,it is obvious from Fig. 9 that the majority of those points lie in an interval where y (x) is more orless 
onstant. Spe
i�
ally, solution is essentially 
onstant for x & 107985. However, rkf45 sele
ted
30165 integration points in that region (≈ 99.7% of the total integration points.) This seems to bea total waste of 
omputational e�ort and time, but in fa
t it is absolutely ne
essary for an expli
itmethod like rkf45. Unlike the δ = 0.01 
ase, the problem is very sti� for δ = 0.00001. Sti�ness
an 
ause numeri
al instability if a large integration step is used, even if the fun
tion is essentially
onstant. In fa
t, this is the usual de�nition for the term �sti�ness�; a very small step size is quiteexpe
ted if an expli
it method is used to solve a sti� problem, even though a

ura
y requirements
ould be satis�ed with mu
h larger integration steps. This is why an expli
it method is de�nitely notthe method of 
hoi
e for su
h kind of problems. Nevertheless, rkf45 was able to solve the problemwith great a

ura
y, albeit ex
essive 
omputational e�ort was needed.For 
omparison, the Fortran subroutine DLSODAR takes only 224 integration steps to solvethe problem for δ = 0.00001, with the same settings as in rkf45 (solution obtained by the Fortransolver is plotted in Fig. 10.) It is obvious that DLSODAR, whi
h is a solver spe
i�
ally designedfor non-sti� and sti� problems as well, is mu
h more e�
ient in this 
ase. Note, however, that theproblem solved here is extremely sti� for the purpose of demonstrating the meaning of sti�ness, inan extreme 
ase. This explains the huge number of integration steps taken by rkf45; in pra
ti
e,many sti� problems do not need su
h a huge amount of 
omputations to be solved, even if an expli
itmethod like rkf45 is used.
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✞ ☎load("rkf45 .ma
")$x_start:0$ x_end:4$ fun
s : [ y1,y2℄$ equs:[998*y1+1998*y2,−999*y1−1999*y2℄$eigenvalues(ja
obian(equs , fun
s )) ;sol : rkf45(equs , fun
s , [ 1 ,0 ℄ , [x,x_start ,x_end℄ , report=true)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"x" ℄ , [ ylabel ,"y_1, y_2"℄ ,[ legend ,"y_1(t)" ,"y_2(t)" ℄ , [ psfi le ,"Stiff_2a . eps"℄)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[x, x_start ,0 .02 ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ ,[ xlabel ,"x" ℄ , [ ylabel ,"y_1, y_2" ℄ , [ legend ,"y_1(t)" ,"y_2(t)"℄ ,[gnuplot_preamble ,"set key 
enter right" ℄ , [ psfi le ,"Stiff_2b. eps" ℄)$y1_exa
t(x):=2*exp(−x)−exp(−1000*x)$y2_exa
t(x):=−exp(−x)+exp(−1000*x)$errors : part(map(lambda( [u ℄ , [ abs(y1_exa
t(u[1℄)−u[2 ℄) ,abs(y2_exa
t(u[1℄)−u[3 ℄ ) ℄ ) ,sol ) , allbut(1))$print("Maximum a
tual error :" ,lmax( flatten(errors )))$
✡✝ ✆Listing 8: Maxima program for solving Eqs. (13).3.2.2 A linear sti� problem.A very 
ommon example of a sti� initial value problem is

{ dy1
dx

= 998y1 + 1998y2
dy2
dx

= −999y1 − 1999y2
,

{

y1 (0) = 1
y2 (0) = 0

(13)(see, e.g. Press et al. (1992, Eqs. (16.6.1-16.6.2)).) The 
oe�
ients in the right-hand side of theseequations may vary in the literature, but the general idea is the same: the derivatives dy1
dx
,dy2
dx

dependstrongly on the fun
tions y1 and y2. The usual test for sti�ness is to derive the Ja
obian of the right-hand side of the di�erential equations, and 
ompute its eigenvalues. In this 
ase, the eigenvalues ofthe Ja
obian,
J =

∂ (998y1 + 1998y2,−999y1 − 1999y2)

∂ (y1, y2)
=

[

998 1998
−999 −1999

]

, (14)are λ1 = −1 and λ2 = −1000, as one 
an easily verify using Maxima. The fa
t that |λ2| ≫ |λ1| is a
lear indi
ation of sti�ness. Furthermore, the sti� nature of a problem 
an be veri�ed if an analyti
solution is available. In our example, the partial solution that satis�es the initial 
onditions is
{

y1 (x) = 2e−x − e−1000x

y2 (x) = −e−x + e−1000x , (15)whi
h 
an be easily obtained in Maxima. Now, the reason of sti�ness (and, 
onsequently, numeri
alinstability) is the term e−1000x, whi
h is important for very small values of x, but it is 
ompletelynegligible otherwise (it be
omes essentially zero very qui
kly.)



3 Sti� initial value problems. 29

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

y 1
, y

2

x

y1(t)
y2(t)

(a) Numeri
al solution for y1 (x), y2 (x) (solution obtained with default a

ura
y.)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.005  0.01  0.015  0.02

y 1
, y

2

x

y1(t)
y2(t)

(b) Magni�
ation near x = 0.Fig. 11: Graphi
al output of Listing 8.



3 Sti� initial value problems. 30The Maxima program that solves the sti� problem (13) is shown in Listing 8. The essentialpart is the 
all of rkf45, whi
h does not di�er from that of any other program solving a system ofdi�erential equations (the problem is solved using default absolute toleran
e, 10−6.) Let us have alook at the report now:------------------------------------------------------Info: rkf45:Integration points sele
ted: 1473Total number of iterations: 1695Bad steps 
orre
ted: 223Minimum estimated error: 6.4847649710556282E-8Maximum estimated error: 9.9734487940981384E-7Minimum integration step taken: 2.4897150300248846E-5Maximum integration step taken: 0.0043726569115022------------------------------------------------------What we see here is that 1473 integration points were sele
ted. Bad (but re�ned and 
orre
ted)steps o

ured 223 times; su
h a large number of bad steps is rather 
ommon in sti� problems, butit is not an indi
ation of sti�ness by itself.There is one interesting fa
t that needs to be dis
ussed here. The algorithm estimated thatthe maximum error is ≈ 9.98 × 10−7, marginally lower than requested a

ura
y, as usual. In thisparti
ular example, the exa
t analyti
 solution is available, so we 
an 
he
k the a

ura
y of thenumeri
al solution obtained. The a
tual maximum error is ≈ 5.47 × 10−9. In other words, a
tualerror is more than two orders of magnitude lower than estimated error. This is unusual, be
ause,as already pointed out, rkf45 returns a solution more a

urate than requested, but the a
tual erroris typi
ally 
lose to the error estimated by the algorithm. However, it is easy to understand whathappened. The problem is sti�, so integration step needed to be kept small, even though a larger stepwould satisfy a

ura
y requirements. This means that, in sti� problems, the results are expe
tedto be 
onsiderably more a

urate than requested, exa
tly be
ause a very small integration step willbe used, due to numeri
al stability requirements. This is a
tually the 
ase here, and it is a 
learindi
ation of sti�ness.The graphi
al output of the program is shown in Fig. 11. The �verti
al� segments of the 
urvesnear x = 0 are not artifa
ts of the plotting utility. It is the exa
t behavior of the solution; the valuesof y1 (x) and y2 (x) 
hange extremely rapidly at very small values of x, due to the fa
tor e−1000xinvolved in Eqs. (15). However, the algorithm was able to dete
t this behavior and a
t a

ordingly,by redu
ing the step as required. In fa
t, rkf45 has sele
ted 167 integration points (more than
11% of the total points) in a tiny interval near the origin, x ∈ [0, 0.02] (0.5% of the total integrationinterval.) Solution for x ∈ [0, 0.02] is plotted in Fig. 11b. One 
an see how fast both y1 (x) and y2 (x)are 
hanging in that tiny interval, for
ing rkf45 to redu
e the step, and start to in
rease it againafter x ≈ 0.01. The situation is similar to that in � 2.2.2 and � 2.2.3, but in the present 
ase the needfor a small step size is mu
h more apparent. It is worth emphasizing, however, that, although theintegration step is in
reasing after x ≈ 0.01, it is still kept relatively small; 1306 integration pointswere needed for x ∈ [0.02, 4], whi
h is too mu
h, 
onsidering the smooth behavior of the solution inthat interval. Again, this is due to the sti�ness of the problem; integration step size is kept smallbe
ause of stability (not a

ura
y) requirements. A di�erent problem, with a solution similar to thatin Fig. 11a (but without the steep part of the 
urve near x = 0) would need mu
h less integrationpoints to be solved, with the same a

ura
y requirements.



3 Sti� initial value problems. 313.2.3 A sti� van der Pol os
illator.In � 2.2.4 an initial value problem involving the var der Pol di�erential equation was solved. In thisse
tion we shall solve the problem for a higher value of the dumping parameter, µ, whi
h makesthe problem sti�. We shall use a di�erent form of the di�erential equation, however (see, e.g.,Hairer & Wanner (2002), Eq.. (1.5'),)
dx2

dt2
=

1

ǫ

(

(

1− x2
) dx

dt
− x

)

= 0,

{

x (0) = 2
dx
dt

∣

∣

x=0
= 0

, (16)where ǫ is a positive parameter, 
orresponding to 1
µ
in Eqs. (4). Eqs. (16) are more 
onvenientfor sti� problems, be
ause the integration interval does not need to be 
hanged, depending on theparameter, as it was the 
ase in Eqs. (4); instead, integration interval is �xed to t ∈ [0, 2]. Lowvalues of ǫ 
orrespond to sti� problems; in this example, we shall use the value ǫ = 0.01.In order to solve the problem, the se
ond-order di�erential equation must be transformed to asystem of two �rst-order di�erential equations, as in � 2.2.4. By putting x = x1, dxdt = x2, Eqs. (16)are written as

{

dx1
dt

= x2
dx2
dt

= 1
ǫ

((

1− x21
)

x2 − x1
) ,

{

x1 (0) = 2
x2 (0) = 0

. (17)Listing 9 shows the Maxima program that solves this problem. Graphi
al output of the programis shown in Fig. 12; Note the peaks of dx
dt

in Fig. 12a, whi
h are a
tually the reason of sti�ness inthis problem. Solution is initially 
omputed with default a

ura
y toleran
e, 10−6. Report given byrkf45 in that 
ase is------------------------------------------------------Info: rkf45:Integration points sele
ted: 2148Total number of iterations: 2165Bad steps 
orre
ted: 18Minimum estimated error: 3.7395389218163665E-8Maximum estimated error: 8.8569168942399216E-7Minimum integration step taken: 6.08069431864205E-5Maximum integration step taken: 0.0027205802470264------------------------------------------------------In this 
ase, 2148 integration points were needed. Minimum integration step is ≈ 6.1× 10−5 � verysmall, 
ompared to the integration interval, [0, 2]. Su
h a small step is a
tually needed in the steepparts of the 
urve dx
dt
. In parti
ular, 664 integration points (≈ 31% of the total points) were used inthe interval t ∈ [0.8, 1], where the �rst peak of dx

dt
lies, and a similar amount of integration points isused for the se
ond peak.Apparently, a �xed-step method would fail to 
ompute the solution a

urately, unless a verysmall integration step would be used globally, whi
h would result in higher 
omputational times. Inthis parti
ular example, a �xed-step Runge-Kutta method of fourth order would need at least 32891integration points to a
hieve an a

ura
y equal to that obtained by rkf45 using 2148 integrationpoints. In terms of fun
tion evaluations (whi
h is often used as a measure of the 
omputation time,)a Runge-Kutta method of fourth order would thus need 131560 fun
tion evaluations, while rkf45



3 Sti� initial value problems. 32
✞ ☎load("rkf45 .ma
")$t_start :0$ t_end:2$ epsilon :1e−2$fun
s : [ x1,x2 ℄$ equs : [ x2,((1−x1^2)*x2−x1)/epsilon ℄$sol : rkf45(equs , fun
s , [ 2 ,0 ℄ , [ t , t_start ,t_end℄ , report=true)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t ) , x'( t)" ℄ ,[ legend ,"x(t)" ,"x'( t)" ℄ , [ gnuplot_preamble ,"set key top le ft" ℄ ,[ psfi le ,"Stiff_3a . eps" ℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, allbut (1))) , sol ) ℄ , [ style , l ines [4 ℄ ℄ ,[ 
olor ,magenta℄ , [ xlabel ,"x" ℄ , [ ylabel ,"x'" ℄ , [ psfi le ,"Stiff_3b. eps"℄)$sol : rkf45(equs , fun
s , [ 2 ,0 ℄ , [ t , t_start ,t_end℄ , absolute_toleran
e=5e−3,report=true)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ , [ x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t)" ℄ ,[ legend ,"adaptive step size (rkf45 results )" ℄ , [ psfi le ,"Stiff_3
 . eps" ℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ , [ x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x'( t)" ℄ , [ 
olor , red ℄ ,[ legend ,"adaptive step size (rkf45 results )" ℄ , [ psfi le ,"Stiff_3d. eps" ℄)$sol_rk: rk(equs , fun
s , [ 2 ,0 ℄ , [ t , t_start ,t_end,(t_end−t_start)/(length( sol)−1)℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol_rk ) ℄ , [x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t)" ℄ ,[ legend ,"fixed step (rk results )" ℄ , [ psfi le ,"Stiff_3e . eps"℄)$plot2d( [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol_rk ) ℄ , [x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x'( t)" ℄ ,[ legend ,"fixed step (rk results )" ℄ , [ 
olor , red ℄ , [ psfi le ,"Stiff_3f . eps" ℄)$
✡✝ ✆Listing 9: Maxima program for solving Eqs. (17).
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(e) Fun
tion x (t), 
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(f) Fun
tion dx

dt
, 
omputed by rk.Fig. 12: Graphi
al output of Listing 9. Figs. (a) and (b) 
orrespond to solution obtainedusing rkf45 with default absolute error toleran
e, 10

−6; Figs. (
) and (d) 
orrespond tosolution obtained with absolute error toleran
e set to 5 × 10
−3. For 
omparison, Figs. (e)and (f) 
orrespond to solution obtained by rk, using the same number of integration points,as in (
) and (d).
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tion evaluations (taking into a

ount that 18 steps were reje
ted.) In other words,rkf45 is about ten times faster in this example.To visualize the di�eren
e between rkf45 and a �xed-step method, we solve the problem again,this time with absolute toleran
e set to 5× 10−3. This would redu
e the integration points needed,so that it will be easier to see the di�eren
e graphi
ally. Indeed, report given by rkf45 is now------------------------------------------------------Info: rkf45:Integration points sele
ted: 291Total number of iterations: 335Bad steps 
orre
ted: 45Minimum estimated error: 2.953992239004648E-5Maximum estimated error: 0.0049405216100875Minimum integration step taken: 5.0200898447719971E-4Maximum integration step taken: 0.019136888549425------------------------------------------------------That is, only 291 integration points were needed, while solution returned is still a

urate to at leasttwo de
imal digits. Results obtained that way are shown in Figs. 12
-12d, where solution is plottedaround the �rst peak of dx
dt
. We also solve the problem using Maxima's fun
tion rk (a �xed-stepmethod); we set the �xed integration step in rk so that a total of 291 integration points are used,as in rkf45 above. Plots of the results obtained that way are shown in Figs. 12e-12f. It is obviousthat a �xed-step method fails to give an a

urate solution.3.2.4 The Brusselator.The Brusselator (1D di�usion) is an initial value problem, 
onsisting of two �rst-order di�erentialequations, together with two initial 
onditions. It is in
luded in several 
olle
tions of sti� initial valueproblems (see, e.g., Hairer & Wanner (2002); Nowak et al. (2010).) Stri
tly speaking, the problemis not very sti�, but it is 
ertainly very interesting as a test for initial value problem solvers. Thetypi
al form of the Brusselator equations found in the literature is

{ dy1
dx

= A+ y21y2 − (B + 1) y1
dy2
dx

= By1 − y21y2
,

{

y1 (0) = 1
y2 (0) = 4.2665

, (18)where A = 2, B = 8.533, and the problem is solved for x ∈ [0, 20].A Maxima program for solving Eqs. (18) is given in Listing 10. Solution obtained with defaultabsolute toleran
e is shown in Fig. 13, where it is apparent that both y1 (x) and y2 (x) exhibit abrupt
hanges and very high slopes periodi
ally. As in all previous 
ases, rkf45 dete
ted this behaviorand redu
ed integration step size a

ordingly. Report given by rkf45 is------------------------------------------------------Info: rkf45:Integration points sele
ted: 1115Total number of iterations: 1150Bad steps 
orre
ted: 36Minimum estimated error: 5.3027036774583149E-8
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✞ ☎load("rkf45 .ma
")$x_start:0$ x_end:20$ y_start:[1 ,4.2665℄$ A:2$ B:8.533$equs : [A+y1^2*y2−(B+1)*y1,B*y1−y1^2*y2℄$sol : rkf45(equs , [ y1,y2 ℄ , y_start , [ x,x_start ,x_end℄ , report=true)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ , [ style , [ lines ,4 ℄ ℄ ,[ ylabel ,"y_1, y_2" ℄ , [ legend ,"y_1(x)" ,"y_2(x)" ℄ , [ psfi le ,"Stiff_4a . eps"℄)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ , [ x,5.15 ,5.4℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ ,[ ylabel ,"y_1, y_2 (rkf45 results )" ℄ ,[ legend ,"y_1(x)" ,"y_2(x)" ℄ , [ psfi le ,"Stiff_4b. eps" ℄)$sol_rk: rk(equs , [ y1,y2 ℄ , y_start ,[x,x_start ,x_end,(x_end−x_start)/(length( sol)−1)℄)$plot2d ( [ [ dis
rete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol_rk) ℄ ,[ dis
rete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol_rk ) ℄ ℄ , [ x,5.15 ,5.4℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ ,[ ylabel ,"y_1, y_2 (rk results )"℄ ,[ legend ,"y_1(x)" ,"y_2(x)" ℄ , [ psfi le ,"Stiff_4
 . eps" ℄)$
✡✝ ✆Listing 10: Maxima program for solving Eqs. (18).
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Fig. 13: Graphi
al output of Listing 10 (part I.)Maximum estimated error: 9.8233659815093057E-7Minimum integration step taken: 3.3850814947041446E-4Maximum integration step taken: 0.21818753157269------------------------------------------------------We see that 1115 integration points were sele
ted by rkf45. This large number of integration points
an be explained by the very high slopes of y1 (x) and y2 (x). Be
ause of this, minimum step size isalso very small, ≈ 3.4× 10−4.It is easy to do estimations about the 
omputational time, as in � 3.2.3. In this example, a�xed-step Runge-Kutta method of fourth order would need at least 59084 integration points toa
hieve the same a

ura
y as in rkf45 above. This means that 236332 fun
tion evaluations wouldbe needed, while rkf45 needs 6900 fun
tion evaluations (we take into a

ount that 36 steps werereje
ted.) Consequently, rkf45 is about 34 times faster in this example.For 
omparison, we solve the problem again, this time using a �xed-step method (rk); we setthe �xed step size so that rk uses 1115 integration points, as in rkf45 above. Results obtained byrkf45 and rk are plotted in Fig. 14; we fo
us on the interval x ∈ [5.15, 5.4], where both y1 (x) and
y2 (x) are very steep. Although both methods use exa
tly the same number of integration points, rkfails to 
ompute an a

urate solution due to its �xed step size; integration points are just distributeduniformly along the integration interval, and thus only a 14 integration points lie in the small interval
[5.15, 5.4] (this is only 1.25% of the total integration interval.) On the other hand, rkf45 redu
edthe step size in that interval, so that 207 integration points (≈ 18.6% of the total integration points)were sele
ted for x ∈ [5.15, 5.4]. That way, rkf45 managed to get an a

urate solution.
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(a) Solution obtained by rkf45 for x ∈ [5.15, 5.4].
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(b) Solution obtained by rk, using the same number of integration points as in rkf45.Fig. 14: Graphi
al output of Listing 10 (part II.)
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