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Abstract

In this paper, a Maxima function for solving initial value problems is introduced. The function
implements the Runge-Kutta-Fehlberg method of fourth-fifth order, providing adaptive step size
and error control. The syntax is discussed in detail, together with several examples and practical
guidelines. Solution to stiff initial value problems is discussed as well.

1 Introduction.

Differential equations have been of fundamental importance in the application of Mathematics to
the physical sciences, and their importance in biological, social, and other sciences is not be un-
derestimated as well. However, even simple mechanical systems are described mathematically by
differential equations which cannot be solved analytically, unless simplifying assumptions - some-
times very unrealistic ones - are adopted. One could safely state that “differential equations cannot
be solved analytically unless if...”, and that if. .. is the main subject of theoretical textbooks about
differential equations. In most realistic problems, however, the use of numerical methods in order
to solve the differential equations involved is more or less mandatory.

Over the years, Runge-Kutta methods for integrating differential equations became very popular,
because of their great performance at relatively little computation effort. For many users, the fourth-
order Runge-Kutta method is not only the first word on the subject, but the last word as well.
However, a good integrator for ordinary differential equations should exert some adaptive control
over its own progress, making changes in the integration step size as necessary. Although Runge-
Kutta methods were originally fixed-step integrators, several improvements providing adaptive step
size do exist. In particular, methods based on a technique often called embedded pairs were widely
used for that purpose, because of their ability to estimate an “optimal” step size with reduced
computational effort.


http://www.gnu.org/licenses

2 Using rkf45. 2

In this paper, we introduce a Maxima function, named rkf45, for the numerical solution of
initial value problems. The method implemented is the popular Runge-Kutta-Fehlberg fourth-fifth-
order scheme. It is able to adjust the integration step so that a predetermined accuracy in the
solution is achieved with minimum computational effort (only six function evaluations are needed
per step.) The reader can find more details about this algorithm in many Numerical Analysis

textbooks, e.g. Nougier (2001); Brian (2006); Burden & Faires (2005); [Press et all (1992).

2 Using rkf45.

2.1 Syntax.

Like all numerical algorithms for solving initial value problems, rkf45 can only solve one or more
differential equations of first order. This is not a serious restriction, as a differential equation of
higher order can be transformed to a system of first-order differential equations (Maxima simplifies
this task as well.)

In its simplest form, rkf45 is used to solve the initial value problem described by one differential
equation, % = f(z,y), and one initial condition, y (x¢) = yo. Note that the differential equation
should be in the form Z—Z = f(z,y), i.e., the right-hard side should define the derivative of the

dependent variable. In such cases, rkf45 can be called as

‘ rkf45(ode,func,initial,interval, options) |,

where ode should define f (x,y) (the right-hand side of the differential equation to be solved,) func
is the dependent variable (the unknown function, say y,) init is the value, yo, of the dependent
variable at the initial value of the independent variable, xg, and interval is a list of three elements.
The first element identifies the independent variable, while the second and third elements are the
initial and final values of the independent variable, for instance [x,0,6]. Initial value does not need
to be less than final value, so an interval like [x,6,0] is also valid.

If a system of differential equations is to be solved, rkf45 should be called in the form

rkf45([odel,ode2,...], [funcl,func2,...],[initl,init2,...],interval,options) |,

where [odel,ode2,...] isalist defining the right-hand sides of the differential equations, [funcl,func2,...]
is the list of the dependent variables, [initl,init2,...] is a list defining the value of the depen-
dent variables at the initial value of the independent variable, and interval is a list defining the
independent variable and the integration interval, as described above.

A number of optional arguments are accepted by rkf45:

1. full_solution: A Boolean, defining if rkf45 should return full solution or not. If set to
true, rkf45 will return a list containing full solution at all integration points selected by the
algorithm. If set to false, only the solution at the final point will be returned (default: true.)

2. absolute_tolerance: The desired upper bound of the error (default: 107.) Each integration
step is accepted only if the local estimated error is less than absolute tolerance. If not, the
step will be rejected, and a new, refined step will be tried again, until the estimated error is
small enough.
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3. max_iterations: The maximum number of iterations (default: 10000.)

4. h_start: The initial integration step (default: one 100th of the integration interval.) The
user does not need to care much about that optional argument. It can be useful in special
cases only, and it is not absolutely necessary even then (see § 222 for an example.)

5. report: A Boolean, defining if a report will be printed at exit. If set to true, rkf45 will print
a report, giving details about the calculations done (default: false.)

Some general remarks should be emphasized.

1. The user has no access to the integration steps taken; they are selected automatically in such
a way that the result is accurate enough. Each step taken is “optimal”, in the sense that it is
sufficiently small so that estimated error is less than desired absolute_tolerance. However,
the user should remember that the algorithm only estimates the absolute error. Nevertheless,
this error estimation is fairly good in most cases, and the actual absolute error is typically less
than absolute_tolerance (see § 2.2.I] for an example.)

2. absolute_tolerance refers to absolute (not relative) accuracy. The default value, 1075, may
be too high or too low, depending on the nature of the problem under consideration. For
example, it doesn’t make sense to seek for a solution with absolute error less than 1076 when
the functions [funcl,func2,...] take typical values of 10* in the integration interval. In
a similar way, the default tolerance may be too high if the functions take typical values of
10~7. For that reason, It is always better to have an idea about the behavior of the functions
involved in the differential equations (see § 2.2.3] for an example.)

3. If the algorithm cannot achieve an accurate solution, it exits with a warning message. In such
cases, one should not blindly increase the maximum number of iterations. The first thing to do
if something goes wrong is to check the differential equations passed to rkf45. In many cases,
an error in [odel,ode2,...], even a small one, may lead to a completely different problem
than the one rkf45 is supposed to solve. Furthermore, reducing absolute_tolerance is worth
a try as well. Trying to get a first solution, perhaps less accurate and in a more narrow interval,
is a good idea if rkf45 is unable to return a solution at a first try. Such a solution can be used
as a guideline to get an idea of what went wrong in the first try, and alter optional arguments
accordingly, so that a more accurate solution can be achieved.

2.2 Examples.

NoTE: Numerical results presented in this paper have been obtained by running the example pro-
grams on a Debian GNU/Linux 64 bit system. Results obtained on a different system may differ
slightly.

2.2.1 One first-order differential equation.

As a first simple example, consider the initial value problem

d
v + 3zy® —

o =0, y(0) =0, 1)
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Fig. 1: Graphical output of Listing [l (part I.)
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load ("rkf45.mac")$

sol: rkf45(—3xxxy~2+1/(x~3+1),y,0,[x,0,5],report=true)$
plot2d ([discrete ,sol],[style,[lines,4]],[psfile ,"Example la.eps"])$

x_ points :map( first ,sol)$
steps:part(x_points,allbut(1l))—part(x_points,allbut (length(x points)))$
x_step(x):—sum(charfun (x_points|i]<—x and x<x_points|i+1])xsteps|i],i,1,
length (steps))$
plot2d(x_step(x),|x,0,last(x_points)—lmin(steps)/10],[style,|lines, 4]|],
[color ;magenta] ,|ylabel,"step_size"],| psfile ,"Example 1b.eps"]|)$

y_exact(x):=x/(x"3+1)$errors :map(lambda([u],abs(y_exact(u[l])—u[2])),sol)$

print ("Actual _minimum_error:" lmin(part (errors,allbut(1))))$

print ("Actual _maximum_error:" lmax(errors))$

plot2d (| discrete ,x points,errors|,|logy]|,|style,|[lines, 4]|,|color,red],
[ylabel,"error"],|psfile ,"Example lc.eps"]|)$

Listing 1: Maxima program for solving Eqs. ().
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Fig. 2: Graphical output of Listing [ (part II.) Absolute error in the numerical solution.
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with € [0,5]. In fact, this is a Ricatti equation, and the exact solution is mgiﬂ, which will be
used to check our results (in Maxima, the exact solution can be obtained by using the package
contrib_ode.)

Listing [l shows the Maxima program for solving the problem numerically. Note particularly the
call of rkf4b:

rkf45 (-3*x*y~2+1/(x~3+1),y,0, [x,0,5])

(the optional argument report=true is also used in Listing [Il to get a report about calculations
done.) Note that we needed to rewrite the differential equation in the form % = —3zy? + ﬁ
Results returned by rkf45 are stored in a list, with elements in the form [x,y], where x is an
integration point (selected by the algorithm,) and y is the value of the function y (z) at that point.
Solution returned can be used to plot our results, as in Fig. [[h. The evolution of the step size is
plotted in Fig. [Ib; the algorithm uses small integration steps from x ~ 0.5 to z &~ 2 because y () is
changing rather rapidly in that interval. For x 2 2, rkf45 starts to increase the step size, because
the slope of y (z) remains small, so there is no need to use small integration steps. Note that the
first step taken is 0.05, which is actually the default value (recall that default initial step is one
100th of the integration interval, in this case W‘r’o = 0.05.) Also note that the last integration step is
considerably smaller than the previous ones, because the final integration point, in this case x = 5,
has been reached.

Now, let us check the report about the computations done. In this example, rkf45 gives the
following output, which is rather typical.

Info: rkf4b:
Integration points selected: 42
Total number of iterations: 45
Bad steps corrected: 4
Minimum estimated error: 3.048850451617402E-10
Maximum estimated error: 9.5960328100330727E-7
Minimum integration step taken: 0.05
Maximum integration step taken: 0.31667551601085

There are some interesting things in this information. First, the algorithm found that four steps
were bad. There is nothing to worry about that; it simply means that accuracy criterion was
not satisfied four times during the computations, so that the corresponding integration steps were
rejected, and rkf45 tried a new, “optimal” step instead. No step is accepted if the estimated error
is not less than prescribed accuracy (which is 107 in this example - the default value, as we didn’t
used the optional argument absolute_tolerance.) Second, 42 integration points were selected
by the algorithm (including the initial point.) rkf45 needed 45 iterations to solve the problem:
41 iterations for the accepted integration points (excluding the initial point) plus four iterations
concerning the bad steps, which were not accepted. Third, the minimum error reported by the
algorithm is ~ 3.0 x 10719 (the error is actually zero at the initial point, but rkf45 does not take
that point into account, when calculating estimated errors.) The maximum error is estimated to
be ~ 9.6 x 1077, marginally lower than requested absolute error tolerance, 107%. In this particular
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example, we know the exact solution, so the program can compute actual minimum and maximum
errors, which are found to be ~ 4.6 x 10~ and ~ 5.9 x 1077, respectively. This verifies that our
numerical results are highly accurate. In both cases, the algorithm overestimates the actual error.
This is expected, as every numerical method has no means to calculate the actual error; it can only
calculate the local truncation error, as an estimation of the actual global error. This means that the
actual error might be lower or even higher than the error estimated by the algorithm. However, the
algorithm tries to be conservative, so the difference between actual and estimated error should be
small and generally not significant.

In this example, error estimation was accurate enough: actual maximum error, ~ 5.9 x 1077, is
indeed less than 1076, which was the (default) absolute_tolerance requested. Those remarks can
also be verified in Fig. 2k, where the absolute error as a function of x is plotted; we see that the error
is kept smaller than prescribed accuracy. It is worth mentioning here how rkf45 increases the initial
step, as it estimates that the error is several orders of magnitude smaller than absolute_tolerance,
so there is no need to keep integrating with such a small step. In general, rkf45 tries to select the
“optimal” step, in the sense that estimated error is kept less than prescribed accuracy, but close to
it.

Report also gives some information about the steps taken: the algorithm needed to take several
step sizes, varying from 0.05 to ~ 0.317, depending on the integration point. Note that the minimum
step, 0.05, is actually the initial step; this is because a smaller step was not needed in this particular
example.

2.2.2 An initial value problem with threshold effect.

Consider the initial value problem

d
% — s 1519 +3.03——
g

dt . 90—, @

with ¢ € [0,100]. Here, s is a parameter. This is a mathematical model for a biochemical mechanism
called genetic swztch ({m , Pp. B77-579).) It is expected that the solution, g (¢), reaches an
equilibrium state as ¢ — co. What is interesting in that deceptively easy problem is that it exhibits
a so called threshold effect: for some critical value of s, the equilibrium state of g (¢) undergoes an
abrupt change to a higher level.

Listing 2 shows the Maxima program which solves Eqs. (2)) for three different values of s (the
program is simplified a lot by usm Maxima’s functlon makelist.) The graphical output of the
program is shown in Fig. [ cf M, Fig. 7.7).) We verify that the initial value problem
exhibits the threshold effect, as expected by the theory. The critical value, s = s¢, is somewhere
between s = 0.202 and s = 0.204 (we can easily compute the exact value of s, in Maxima, but this
is out of the scope of this paper.) Now, let us examine how rkf45 reacts on the threshold effect. In
the s = 0.202 case, rkf45 reports

Info: rkf45:
Integration points selected: 24
Total number of iterations: 24
Bad steps corrected: 1
Minimum estimated error: 8.9798104760311307E-9
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load ("rkf45.mac")$
t_start:08 t_end:100$

sol:makelist(rkf45(equ,g,0,[t,t start,t end]|,report—true),equ,
makelist (s—1.51xg+3.03xg~2/(14+¢g"~2),s,[0.206,0.204,0.202]))$
plot2d (makelist (|discrete ,s]|,s,sol) ,[style,|lines,4]||,[xlabel,"t"|,
[ylabel,"g(t)"],[legend,"s—0.206","s—0.204","s—0.202" |,
[gnuplot preamble,"set_key_left"],[psfile ,"Example 2a.eps"])$

$01206:rkf45(0.206—1.51%g+3.03%xg~2/(1+g"~2),g,0,[t,t start,t end],
absolute tolerance=5—8,report=true)$
plot2d (| discrete ,s01206] ,|style,|linespoints,4]|]|,|xlabel ,"t"]|,
[ylabel,"g(t)"],[legend,"s—0.206,_rkf45_results"]|,
[gnuplot preamble,"set_key_bottom_right"],[ psfile ,"Example 2b.eps"])$

s01206 _rk:rk(0.206—1.51%g+3.03xg"2/(1+g"~2),g,0,
[t,t_start,t_end,(t_end—t_start)/(length(sol206)—1)])$
plot2d ([discrete ,s0l206_rk|,[style,[linespoints,4]|],[xlabel,"t"],
[ylabel,"g(t)"],[legend,"s—0.206,_rk_results"],
|gnuplot preamble, "set_key_bottom_right"| | psfile ,"Example 2c.eps"|)$

S

Listing 2: Maxima program for solving Eqs. (2)) for three different values of the parameter s.
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Fig. 3: Graphical output of Listing 2 (part I.)

Maximum estimated error: 3.870532540022239E-7
Minimum integration step taken: 0.15874561265253
Maximum integration step taken: 19.17485694258996

We see that 24 integration steps were selected to solve the problem. What is interesting here is that
one bad step was found, rejected, and refined. It is easy to figure out why that bad step occured. By
default, the initial step is set to one 100th of the integration interval, in this case 1. Apparently, that
step was too big to get an accurate solution near ¢t = 0, where the value of g (¢) is changing rapidly.
We can easily verify this is the case by using the optional argument h_start to set a smaller value
for the initial step, say h_start=0.2, and run the program again: we get almost the same results,
but this time no bad steps are reported in the s = 0.202 case. It is not really needed to change the
initial step manually, but it is a good example on how optional argument h_start can be used to
investigate what happened in some special cases.
Now let us compare this report with the corresponding report for s = 0.206:

Info: rkfédb:
Integration points selected: 62
Total number of iterations: 75
Bad steps corrected: 14
Minimum estimated error: 1.3371075149203189E-12
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Maximum estimated error: 8.6197147915565898E-7
Minimum integration step taken: 0.15685566484769
Maximum integration step taken: 7.845262303547721

This time, 14 bad steps needed to be corrected. This is because of the high slope of the solution,
which forced rkf45 to refine the step several times, due to the rapid changes in g (t). What is more
interesting here is the fact that 62 integration points were selected, about 2.5 times more than in
the s = 0.202 case. This is how the algorithm reacts to the threshold effect. Solution for s = 0.206
is above the critical value, s.. The high slope of g (t) between ¢ ~ 30 and ¢ ~ 50 was detected by the
algorithm, and it reacted by taking more, smaller integration steps, in order to keep the estimated
error as small as required; in fact, about 42% of the total integration points lie in ¢ € [30,50]. This
is a typical behavior for adaptive step size methods, and the main reason they are widely used. One
can easily imagine what would happen if we used a fixed-size method to solve this problem: the
algorithm would not care about the abrupt change in g (¢), and it is left to the user to guess how
many integration steps should be taken to get an accurate solution.

In order to examine the behavior of rkf45 compared to that of a fixed step size method, we
solve the problem for s = 0.206 again, this time with absolute tolerance set to 5 x 1078, so that at
least seven decimal digits should be accurate. Report in this case reveals that rkf45 selected more
integration points than before:

Info: rkf45:
Integration points selected: 110
Total number of iterations: 122
Bad steps corrected: 13
Minimum estimated error: 7.5714731382439109E-17
Maximum estimated error: 4.8700547655067209E-8
Minimum integration step taken: 0.036668228503785
Maximum integration step taken: 5.760239986218677

We see that 110 points were selected, instead of 62 points, if accuracy is set to default, 1076, As
expected, the error in computations is lower; maximum error is now estimated to be ~ 4.9 x 1078,
compared to ~ 8.6 x 1077 in the previous case.

We now solve the problem for s = 0.206 using Maxima’s function rk, which is a fixed-step,
fourth-order Runge-Kutta method. We set the fixed step size so that rk uses 110 integration points
(same as in the rkf45 case above.) Fig. M shows our results graphically, and it is easy to see the
difference between adaptive and fixed step size methods. An adaptive step size method selects many
integration points in the steep parts of the curve, and only a few points in the rest. On the contrary,
a fixed step size method just uses the same step size everywhere, regardless of the slope of the curve.
In this example, rkf45 selected ~ 49% of the total integration points in the most steep part of the
curve, t € [30,50], while rk used only 20% of the total points in the same interval. On the other
hand, for ¢t > 50, rkf45 selected ~ 23% of the total integration points, while rk used 50% of the
total points; most of them are actually wasted computations, since function g (¢) practically reaches
an equilibrium state soon after ¢ = 50. Note that rkf45 could select even less integration points in
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load ("rkf45.mac")$
K1:0.4%8.8/62/0.03$ k2:0.5%8.8/139/0.2/0.003$ k3:0.4%8.8/139/0.2/0.003%
t_ start:0% t_end:2$

sol:rkf45 (| k1% (C-L),k2x(32—C)+k3«(L-C)|,[L,C|,[150,150],[t,t start,t end],
report=true)$
plot2d ([[discrete ,map(lambda([u],part(u,[1,2])),sol)],
[discrete ;map(lambda([u],part(u,[1,3])),sol)]],
[ vlabel | "temperature_(F)"],

)
)
[style,[lines,4]],[xlabel,"time_ (hours)"]
[legend,"liquid ,_L(t)","container, C(t)"|,| psfile ,"Example 3a.eps"|)$
plot2d (|| discrete ,map(lambda(|u],part(u,|1,2])),sol)],

[discrete ;map(lambda([u], part(u ,[1 ,31)),sol)]],[x,0,0.3],
[style,[linespoints,4]||,[point_type,bullet]|,|[xlabel,"time_(hours)"]|,
[ylabel,"temperature_(F)"| ,[legend,"liquid , _L(t)","container, C(t)"],
| psfile ,"Example 3b.eps"|)$

Listing 3: Maxima program for solving Eqs. ([3)).

that region, but algorithm implementation is rather conservative, and does not allow too big step
size changes.

2.2.3 A system of two first-order differential equations.

In this section we shall see how to use rkf45 in order to solve a system of two first-order differential
equations with respect to two initial conditions,

{% = k(C-1L) ’ {L(O) = 150 | 3)
ko (32— C)+ k3 (L — C) C(0) = 150

with ¢ € [0,2]. Eqgs. (@) describe the cooling of a container and its liquid contains. Here, ¢ is the
time, L, C are the temperatures of the liquid and its container, respectively, and ki, ks, ks are
constants (see Briarl , pp. 626-627) for details.) Listing Bl shows the Maxima program used to
solve the problem. Notice how rkf45 is called in this case,

rkf45([k1*(C-L) ,k2*(32-C)+k3*(L-C)], [L,C], [150,150], [t,t_start,t_end])

(we also used the optional argument report=true in Listing B to get an idea of the calculations
done.) Result is stored in a list, with elements in the form [t,L,C], where t is the integration point,
and L, C are the values of the functions L and C at t. The graphical output of the program is shown
in Fig. [l (cf. B (M Fig. 7.16).) Note particularly that the container is cooled much faster that
its liquid contents, and function C( ) is decreasing rapidly in the beginning. In this case, report
printed by rkf45 is as follows

Info: rkf4b:
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load ("rkf45.mac")$

t_start:0$ t_end:20$ mu:4$

equ:’ diff(x,t,2)+muws(x"2—1)«" diff(x, t)+x=0%

equ2:|’diff(xl,t)=x2,ev(solve(equ,’ diff(x,t,2))|1], diff(x,t,2)="diff(x2,t),
"diff(x,t)=x2,x=x1)];

equ2 :map(rhs,equ2) ;

sol:rkf45(equ2,[x1,x2],[0.75,0],[t,t start,t end|,report=true)$
plot2d ([[discrete ,map(lambda([u],part(u,[1,2])),sol)],
|discrete ;map(lambda(|u|,part(u,|[1,3])),sol)]],
[style,|[lines,4]|],|xlabel,"t"]|,|ylabel,"x(t),.x’(t)"],
[legend,"x(t)","x"(t)"],[ psfile ,"Example 4a.eps"|)$
plot2d ([discrete ;map(lambda(|u],part(u,[2,3])),sol)],[style,lines[4]],
[color ;magenta] ,[xlabel,"x"],[ylabel ,"x’"] [ psfile ,"Example 4b.eps"])$

Listing 4: Maxima program for solving Eqs. ().

Integration points selected: 316
Total number of iterations: 332
Bad steps corrected: 17
Minimum estimated error: 5.4650657325752074E-8
Maximum estimated error: 9.7738230565866937E-7
Minimum integration step taken: 1.6519396700522609E-4
Maximum integration step taken: 0.044380874549758

We see that the algorithm selected 316 integration points in this case, much more than in previous
examples. This is because a very small step was needed for small ¢, due to the rapidly decreasing
function C (t), and because of the high accuracy required. In fact, 234 out of 316 points (about
74%) were needed for a small time interval, from ¢t = 0 to ¢ = 0.1 (5% of the total time interval.)
This fact is more pronounced in Bb. Furthermore, the fact we solved the problem using default
accuracy, 1079, is an exaggeration, considering that C () > 40°F. We can therefore safely reduce
the accuracy needed to a more plausible value, say 5 x 1073, so that results should still be accurate
to at least two decimal digits. Indeed, adding accuracy=5e-3 in the call of rkf45 would reduce the
integration points to 93 (&~ 3.4 times less than above,) without any noticeable loss of accuracy.

2.2.4 A second-order differential equation: the van der Pol equation.

As an example of a second-order differential equation, we shall solve the initial value problem de-
scribed by the well-known van der Pol equation and two initial conditions (see, e.g.,

(@, § 1.16), Hairer & Wannex (IZDﬂj, Eq. 1.5), Brian (@, Example 7.28))

dz? 9 dx z(0) = 0.75
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Fig. 6: Graphical output of Listing [

where ¢ € [0,20], and p is a positive parameter. This is an oscillator with non-linear dumping; what
makes this problem interesting is exactly the damping term, p (z? — 1) Cé—f. For |z| > 1, the damping
coefficient, (mz - 1), is positive, and thus the damping term acts as friction or resistance, draining
energy from the system. However, if |z| < 1 the damping coefficient is negative, and the term acts
as “negative resistance”; supplying energy to the system. From a computational point of view, the
dumping parameter, p, is crucial; a small value of p makes the damping term negligible, and the
problem is very easy to solve. On the other hand, a higher value of 1 makes the problem stiff, and
thus much harder to solve numerically. In this example, we take p = 4, a rather small value.

The initial value problem (@) can be solved by transforming the original second-order equation
to a system of two first-order differential equations. This can done by putting z = x1, ‘fl—f = x5 (and,

consequently, % = dd%). so that Eqs. (] are now written as
{ = g { z1(0) = 0.75 5)
diy — (@ -Nay—a1 " | 220 =0

Transformation can be easily done in Maxima, as shown in Listing @l Egs. (&) can now be solved by
rkf45. just as any other system of first-order differential equations. Solution is returned as a list,
with elements in the form [t,x1,x2], where t is the integration point, and x1, x2 are the values of
the functions x1, zo (or, equivalently, z, ‘fl—f) at that point. Graphical output of the Maxima program
[ is shown in Fig. [6l where the non-linear oscillatory nature of the solution is apparent (cf., e.g.,
(2006, Fig. 7.18).)

In this example, the absolute tolerance is set to 107¢ (the default value,) and the report returned

by rkf45 is as follows.

Info: rkf4b:
Integration points selected: 632
Total number of iterations: 652
Bad steps corrected: 21
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Minimum estimated error: 2.839347393139819E-8

Maximum estimated error: 9.914713641306354E-7
Minimum integration step taken: 0.0068707778178574
Maximum integration step taken: 0.10198351520456

Here 632 integration points were selected, and the maximum estimated error is ~ 9.9 x 10~7. The
high number of integration points is caused by the slopes of the curves, especially Cé—f (see Fig. [Bh.)
Although computation time is not an issue in this example, computations needed can be reduced
considerably by reducing absolute_tolerance. For example, if four accurate decimal digits are
enough, we can set absolute_tolerance=5e-5, and rkf45 would now need 252 points; that is,
computations needed would be reduced by about 60%, but the result would still be very close to
what we get with more than double the computational effort.

2.2.5 A system of two second order differential equations: the double pendulum.

The double pendulum is a simple physical system consisting of one pendulum attached to another.
Despite its simplicity, it exhibits rich dynamic behavior, varying from a simple linear system to a
chaotic system. One can easily derive the Lagrangian and the equations of motion using Maxima,
but we shall concentrate on the result of that algebra, which is two coupled second-order differential
equations; together with four initial conditions, they form the initial value problem,

2 2
—g(2m1+mg) sin 01 —mag sin(61—262)—2 sin(01 —02)mo ((%) Lo+ (%) 41 cos (61 —02))

20, _
a2z £1(2m1+ma—ma cos(201—2602)) (6)
20, 2sin(€1—€2)((%)251(m1+m2)+g(m1+m2)cosel_,_(%)ZngQcos(01—92))
a2 O3 (2m1+ma—ma cos(201 —202))
T T dbq dbs
00 =2, 0= St -0 22 -
1) =5, 0= — R (7)

where ¢ is is the local acceleration of gravity, my, mo are the two masses, ¢1, {2 are the lengths of
the two rods, and 6y, 02 are the angles that each pendulum swings away from vertical downwards
(as usual, counter-clockwise angles are positive.) In order to solve this problem numerically, we need
to transform Eqs. (@) to a system of four first-order differential equations, and transform the initial

conditions ([l) accordingly. The procedure is similar to that of § 224t We put % = wy, % = wy

(angular velocities of the two rods,) and, consequently, %@l = %, %022 = dd%, so that the problem

is now written as

& - .
dor —g(2m1+m2)sinGl—ngsin(01—2€2)—2sin(01—€2)m2(w%fg—f—w%(l 005(61—02)) , (8)
dt J2 (2m1 +mao—mo COS(291 —292))
dws 2 sin(61 —02)(w%€1(m1 +ma)+g(mi+ma2) cos €1+w%€2m2 cos(Gl—Gg))
dt 2 (2m1 +mao—mo COS(291 —292))
s T
6’1 (0) = g, 6’2 (O) = Z, w1 (0) = 0, w2 (0) =0. (9)

The Maxima program that solves this problem is shown in Listing Bl The program is quite
similar than the previous ones (it is more lengthy mainly because several quantities are plotted.)
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load ("rkf45.mac")$
ml:1$ m2:1.5% 11:0.48% 12:0.6% :9.81% t_start:0$ t_end:8$
d2th1dt2:(—g+*(2+mbm2)*sin (thl)—m2+g+sin (th1—2xth2)
—2ksin (th1—th2)sm2« (" diff (th2,t)~2x124+ diff(thl,t)"2«11xcos(th1—th2)))
/(11 (2xmbm2—m2«cos (2xth1—2xth2) ) ) $
d2th2dt2: (2xsin (th1—th2)«(* diff (thl,t) " 2%11 % (mbm2)+g*(mktm2)«cos (thl)
+7diff(th2,t) "~ 2x12xm2«cos(thl—th2)))
/(12 (2+mbm2—m2«cos (2xth1—2xth2)) ) $
equs:ev (|omegal,omega2,d2th1dt2,d2th2dt2|,’ diff(thl, t)=omegal,
"diff (th2,t)=omega2) ;
thl_start: float(%pi/8)$ th2_start:float(%pi/4)$ omegal start:0$ omega2_start:0$

sol:rkf45(equs,|thl,th2, omegal,omega2|,
[thl start,th2 start,omegal start,omega2 start|,[t,t start,t end],
report=true)$

plot2d ([[discrete ,map(lambda([u],part(u,[1,2])),sol)],

[discrete ;map(lambda([u],part(u,[1,3])),sol)]],
|style,|[lines,4]||,|xlabel,"t_(s)"],|ylabel, "angle_(rad)"],
|legend,"{/Symbol_q} 1(t)","{/Symbol_q} 2(t)"],
| psfile ,"Example 5a.eps"|)$

plot2d ([[discrete ,map(lambda(|u],part(u,[1,4])),sol)],

[discrete ;map(lambda([u],part(u,[1,5])),sol)]],
[style,[lines,4]|,[xlabel,"t_(s)"],[ylabel, "angular_velicity_(rad/s)"],
|legend,"{/Symbol_w} 1(t)","{/Symbol_w} 2(t)"]|,
| psfile , "Example 5b.eps"|)$

plot2d ([discrete ;map(lambda(|u],part(u,[2,3])),sol)],[style,[lines, 4]|],
[xlabel,"{/Symbol_q} 1_(rad)"|,[ylabel,"{/Symbol_q} 2_(rad)"|,
[color ;magenta] ,[legend, false|,[psfile ,"Example 5c.eps"])$

plot2d (| discrete ,map(lambda(|u],part(u,[4,5])),sol)]|,|style,|lines, 4]],
| xlabel ,"{/Symbol_w} 1_(rad/s)"]|,|ylabel,"{/Symbol_w} 2_(rad/s)"|,
[color ;magenta] ,[legend, false|,[ psfile ,"Example 5d.eps"])$

plot2d ([ discrete ,map(lambda([u], part (u,[2,4])),sol)]|,[style,[lines 4]],
[xlabel,"{/Symbol_q} 1_(rad)"|,[ylabel,"{/Symbol_w} 1_(rad/s)"|,
[color ,green],[legend, false|,| psfile ,"Example 5e.eps"]|)$

plot2d (| discrete ,map(lambda(|u],part(u,[3,5])),sol)]|,|style,|lines, 4]],
| xlabel ,"{/Symbol_q} 2_(rad)"|,|ylabel,"{/Symbol_w} 2_(rad/s)"]|,
[color ,green],[legend, false|,[psfile ,"Example 5f.eps"])$

Listing 5: Maxima program for solving Eqs. (8H3)).




2 Using rkf45.

angle (rad)

6, (rad)

w (rad/s)

0.8

0.6 |

04

02

02 F

04 F

-0.6

-0.8

0.8

0.6 [

0.4

02

0

-0.2

04 F

-0.6 |

-0.8

0.
&

Uyl

6

o

t(s)

(a) Angles 04 (t) and 6 ().

©

A
<7

-0.8 0.2 0.4 0.6

0 (rad)

(c) 02 vs. 0.

0.8

7

St

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

8, (rad)

(e) w1 vs. 0.

0.8

w, (rad/s) angular velicity (rad/s)

g il

w, (rad/s)

M

;1 V“\Wv |

P
A

O —
R

4
3
2
1
: IRy

—

0 1 8
t (s)

(b) Angular velocities wy (t) and ws (t).

i s
S

-4 -3 -2 -1 0 1 2 3 4
w, (rad/s)

(d) we vs. wi.

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
0, (rad)

(f) w2 VS. 92.

Fig. 7: Graphical output of Listing Bl



2 Using rkf45. 19

In this particular example, we take mq = 1kg, mo = 1.5kg, /1 = 0.4m, 5 = 0.6m, and g =
9.81m/s?. Transformation from Eqs. @) to Eqs. (88) and numerical solution via rkf45 is similar
to that in Listing. @l The transformed system is solved by rkf45 as a system of four first-order
differential equations (for ¢ € [0,8].) Solution is returned as a list, with elements in the form
[t,thl,th2,omegal,omega2], where t is the integration point, and thl, th2, omegal, omega2 are
the values of the functions 61, 65, w1, wy at that point. Using that information, the program creates
several plots, shown in Fig. [[l Report returned by rkf45 shows that 845 integration points were
used:

Info: rkf4b:
Integration points selected: 845
Total number of iterations: 877
Bad steps corrected: 33
Minimum estimated error: 2.350379310893348E-8
Maximum estimated error: 9.7924074620423794E-7
Minimum integration step taken: 0.0056717734638438
Maximum integration step taken: 0.01858201039005

The maximum error is estimated to be ~ 9.8 x 1077, As in the previous example, setting accuracy
to 5 x 1079, reduces the number of integration points by about 60%.

2.2.6 The Pleiades problem.

The Pleiades problem is an artificial celestial mechanics problem of seven stars moving in the same
plane. Mathematically, it is described by a system of 14 second-order differential equations, together
with 28 initial conditions, defining initial position and velocity for each celestial body. The problem
is not stiff, but it is complex enough. Because of its complexity, it is included in several collections
of test problems for ordinary differential equation solvers (see, e.g., Mamﬂa‘gmm (Iﬂ)ﬂﬁ),
Nowak et all (|2Qld)) Traditionally, the problem is solved for seven celestial objects, apparently as
a simple simulation of the well-known Pletades star cluster. However, the problem can be easily
expanded for any number of objects, not necessarily in the same plane. In this paper we shall use
formulation and data taken from Hairer et all (ILM), as all collections of test problems do.

For every object in the plane, position is defined by the vector function 77 = ;g + y,@ , where
i=1,...,7, and ug, z?y are the unit vectors along the x— and y—axis, respectively. Similarly,
velocity is defined by the vector functions and dd? = %@ + %@ . The unknown functions of the
problem are x;, y;, %, Cigj fori=1,...,7, and they are all functions of time, ¢. It is easy to derive
the 14 equations of motion for such a system; together with the initial conditions generally adopted
in all similar tests, they form the initial value problem

Ty (0) [3’37_17_372’_2)2]T
2y, $ da; = [0,0,0,0,0,1.75,—1.5]" >
@z Zj;éz’ m; (Yi — yj) /Tij J t=0 -

Ly — [0,0,0,—1.25,1,0,0]
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load ("rkf45.mac")$

fx (i):=sum(if j#i then jx(concat(x,j)—concat(x,1))/
((concat (x,1)—concat(x,j)) 2+
(concat (y,i)—concat(y,j))"2)"1.5
else 0,j,1,7)%
fy (i):=sum(if j#4 then jx(concat(y,j)—concat(y,i))/
((concat(x,i)—concat(x,j)) 2+
(concat (y,i)—concat(y,j))"2)"1.5
else 0,j,1,7)%
equs: flatten (| makelist(concat(dx,i),i,1,7),makelist(concat(dy,i),i,1,7),
makelist(fx(i),i,1,7),makelist(fy(i),1,1,7)])$
funcs: flatten (| makelist(concat(x,i),i,1,7),makelist(concat(y,i),i,1,7),
makelist (concat (dx,i),i,1,7),makelist(concat (dy,i),i,1,7)])$
init:(3,3,-1,-3,2,-2,2,3,-3,2,0,0,—4,4,0,0,0,0,0,1.75,—-1.5,0,0,0,—1.25,1,0,0|$
t_start:0% t_end:3$

sol:rkf45(equs,funcs,init ,[t,t start,t end|,report=true)$

initial points:[discrete ,makelist ([init[i],init[i+7]],i,1,7)]$
trajectories:makelist ([discrete ;map(lambda([u],part(u,[1+i,8+1])),s0l)],i,1,7)$
styles:append(|style|,makelist(|lines,4],i,1,7),|points]|)$
colors:|color,red,green, blue,magenta,cyan,yellow,black|$
legends:append ([legend | ,makelist (sconcat ("Body_",i),i,1,7),[""])$
plot2d (endcons(initial points,trajectories),styles ,[point type,circle],
endcons(black, colors) ,[xlabel ,"x"| ,[ylabel ,"y"]|,legends,
| psfile ,"Example 6a.eps"|)$
plot2d (makelist (| discrete ;map(lambda( |u|,part(u,|1,1+1])),sol)],i,1,7),styles,
colors,[xlabel ,"t"| ,[ylabel,"x i_(t)"],legends,
[ psfile ,"Example 6b.eps"|)$
plot2d (makelist ([ discrete ,map(lambda([u] ,part(u,[1,8+1i])),sol)],i,1,7),styles,
colors,[xlabel ,"t"|,|ylabel,"y i_(t)"],legends,
| psfile ,"Example 6c.eps"|)$

Listing 6: Maxima program for solving Eqs. ().
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where m; are the masses of the objects, and r;; = (x; — xj)2 + (y; — yj)2. In this example, we take
m; = j, and the problem is solved for ¢ € [0, 3].

In order to solve Eqgs. (I0]), we need to transform the second-order differential equations to a
system of first-order differential equations. This is easily done by putting % = Xi, % = 1;, so that
Egs. (I0) are now written as

de; .

AR zi(0) = [3,3,-1,-3,2,-2,2]"

F = Q/)Z 3 Yi (O) = [37_37270707 _474]T (11)
2? = Z];éz mj ($Z —l‘j)/?"é 7 Xi (0) = [07070707071'75’_1“3]T

doe = S ami(wi—yy) [r} Vi = 10.0,0,1.25,1,0,0]

Listing[@shows the Maxima program for solving the initial value problem ([I1J). It is worth mentioning
here that Maxima offers the ability to define the set of differential equations in a very elegant way,
using built-in functions concat and makelist. rkf45 returns the solution as a list, with elements in
the form [t,x1,...,x7,y1,...,y7,dx1,...,dx7,dyl,...,dy7], where t is the integration point,
and x1,...,x7,y1,...,y7,dx1,...,dx7, dyl,...,dy7 are the values of the functions xz;, y;, x; =
de; 4 = i at that point. Graphical output of the program is shown in Fig. 8l Report of rkf45

“di dt
is as follows.

Info: rkf45:
Integration points selected: 1143
Total number of iterations: 1144
Bad steps corrected: 2
Minimum estimated error: 3.8961905793680196E-8
Maximum estimated error: 9.8286131077889909E-7
Minimum integration step taken: 2.5152068765271884E-5
Maximum integration step taken: 0.065073956846732

The algorithm selected 1143 integration points. In a modern personal computer, rkf45 solves
the above problem in somewhat less than eight seconds. Compared to previous examples, this
computation time is at least seven times larger. This is expected, considering the fact we are solving

a set of 28 non-linear differential equations; the term r;% = <(a:z - xj)2 + (y; — yj)2) ? involved in
14 differential equations, is also a reason of the larger computation time. As in previous examples,
reducing accuracy, even slightly, would reduce computation time considerably. For example, setting
absolute tolerance to 5 x 1075 reduces integration points and computation time by about 62%.

3 Stiff initial value problems.

3.1 General discussion.

Although a single, precise definition of “stiffness” does not exist, an initial value problem is generally
considered as stiff if explicit numerical methods either work very slowly, or they don’t work at
all, because the integration step needs to be so small that it is practically impossible to solve the
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problem. Such a small step size is necessary not to achieve accuracy requirements, but because
numerical integration becomes unstable otherwise, giving completely erroneous results. In other
words, the step size is dictated by stability requirements rather than by accuracy requirements. The
most common reason for this behavior is a set of differential equations where the derivatives of the
unknown functions depend on the functions themselves in a very strong way. Typically, this means
that solution may vary rather slowly in the majority of the integration interval, but there is at least
one region, often very narrow, where functions vary rapidly, or even extremely rapidly, in very stiff
problems. Another reason of stiffness might be unusual initial conditions; the reader can find a
detailed analysis of the term “stiffness” in Hairer & Wanner 2002.

It is worth emphasizing that not all difficult problems are stiff, but all stiff problems are difficult
for solvers not specifically designed for them. Special methods, designed for solving stiff differential
equations, do exist in the literature; most notably, methods based on the backward differentiation
formula, also called Gear methods, are known to work very well on stiff problems. More sophisticated
algorithms, able to switch from non-stiff to stiff mode and vice versa, do exist as well. For example,
the package ODEPACK (IHmdm.aJ;&H (Il})_&{{)) is an excellent collection of Fortran solvers for both
non-stiff and stiff initial value problems. Among them, the LSODAR solver (and its double-precision
version, DLSODAR) switches automatically between non-stiff and stiff methods (IReLz—Qld| (@))
In addition, DLSODAR is able to find the root of at least one of a set of constraint functions of the
independent and dependent variables, and stop integration at that point; this feature is particularly
useful for solving initial value problems where the domain of integration is not known in advance
(see, e.g., Papasotiriou et all (2007).)

rkf45 is an explicit Runge-Kutta method, and, as such, it is not specifically designed for solving
stiff differential equations. Its ability to adapt the step size makes it capable to deal with such
difficult problems, at least in several cases. However, as all explicit methods, and despite its adaptive
step size, rkf4b still needs many integration steps to solve a stiff problem, while a special method,
designed to solve stiff systems, would need much less integration points to achieve the same accuracy
(but at higher computational cost per step.) Consequently, rkf45, as every other explicit method, is
not the method of choice for solving stiff problems. That being said, and given the lack of a better
way to solve stiff initial value problems in Maxima, we shall give some examples of such problems,
and show how they can be solved by rkf45.

3.2 Examples of stiff problems.
3.2.1 One first-order differential equation.

A well-known example, which can be used to demonstrate the meaning of stiffness, is the initial
value problem

]

sometimes called Shampine’s ball of flame. This problem might seem simple, but it is not. The
parameter § plays a crucial role on the stiffness of the problem. High values of § make the problem
non-stiff, and easy to solve numerically. However, as § is decreasing the problem becomes stiffer, and
eventually much more difficult to solve. Listing [0 shows a Maxima program that solves the problem
for two representative values of §: (a) 6 = 0.01 (mildly stiff) and (b) 6 = 0.00001 (very stiff.) In
both cases, the absolute tolerance is set to 5 x 1075,

S4B y(0) =4, xe[O,g], (12)
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load ("rkf45.mac")$
x_start:0$

d:0.01% x_end:2/d$
sol nonstiff:rkf45(y"2—y~3,y,d,|x,x_start,x end|,absolute tolerance=5be—S8,
report=true)$
plot2d ([discrete ,sol nounstiff],[style,[linespoints,4]],[psfile,"Stiff la.eps"])$
yconst: part (sol _nonstiff,
sublist _indices(sol nonstiff ,lambda([u],abs(1—u[2])<5e—6)))$
print ("Solution_is_essentially _constant_for_x_>",yconst|1|[1])$
print (length(yconst),"integration_points_were_selected_in_that_region.")$

d:0.00001% x_end:2/d$

sol stiff:rkf45(y"2—y~3,y,d,|x,x_start ,x_end|,absolute tolerance=he—8,
max_iterations=40000,report=true)$

plot2d (| discrete ,sol stiff]|,[style,[linespoints,4]]|,|psfile,"Stiff 1b.eps"|)$

veonst: part (sol _stiff sublist indices(sol stiff lambda([u],abs(1—u[2])<5e—6)))$

print ("Solution_is_essentially _constant_for_x_>",yconst|[1][1])$

print (length(yconst),"integration_points_were_selected_in_that_region.")$

Listing 7: Maxima program for solving Eqgs. (I2).
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In Fig. Ok, the solution for 6 = 0.01 is plotted. There is nothing really surprising in this case;
the plot is qualitatively the same as in Fig. dh. rkf45 takes very small steps where it is needed,
i.e., at the part of the curve where the slope is high; on the other hand, the step size is much larger
where solution y (x) varies slowly. The fact that the problem is not very stiff is also apparent in the

report returned by rkf45:

Info: rkf4b:

Integration points selected:
Total number of iterations:
Bad steps corrected:
Minimum estimated error:
Maximum estimated error:

100

118

19
1.8451422293479214E-13
4.8629641270472728E-8

0.16629844052309
32.0

Minimum integration step taken:
Maximum integration step taken:

Here, minimum integration step taken is ~ 0.17, and apparently corresponds to the interval where
y (x) varies quickly. On the other hand, maximum integration step taken is 32, corresponding to
higher values of z, where the step size does not need to be small. To make things more quantitative,
a few commands were added in Listing [7] in order to compute how many integration points were
taken for the part of the curve where |1 —y ()| < 5 x 107%. We see that, for § = 0.01, solution
is essentially constant for z 2 117, and rkf45 selected 29 integration points in that region (29% of
the total integration points,) which is rather more than what was expected; however, as it has been
pointed out already, the algorithm is generally conservative, and avoids too big step size changes.
To conclude, all the facts mentioned above are more or less expected; there is nothing really unusual
in the solution for § = 0.01.

Fig. @b shows the solution for § = 0.00001, and it is obvious that something is wrong in this
case. The algorithm selects only a few integration points in the beginning, and much more points
where y (x) varies quickly; this is normal and expected. However, rkf45 keeps using a very small
integration step, even for higher values of z, where y () is essentially constant, and equal to 1. There
is no apparent reason for this behavior; a few steps should be more than enough in this interval.
This is not a bug in rkf45, however; it is a direct consequence of stiffness.

Let us examine what happened more thoroughly. This is what rkf45 reports about the compu-
tations:

Info: rkf45:
Integration points selected: 30247
Total number of iterations: 35205
Bad steps corrected: 4959

Minimum estimated error:
Maximum estimated error:
Minimum integration step taken:
Maximum integration step taken:

1.9654044991423955E-19
4.998424021413516E-8
0.16632940865998
51200.0
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Fig. 10: Same as Fig. @b, but using the Fortran solver DLSODAR instead of rkf45.

We see that 30247 integration points were selected, much more than in the § = 0.01 case. However,
it is obvious from Fig. [0 that the majority of those points lie in an interval where y () is more or
less constant. Specifically, solution is essentially constant for x = 107985. However, rkf45 selected
30165 integration points in that region (= 99.7% of the total integration points.) This seems to be
a total waste of computational effort and time, but in fact it is absolutely necessary for an explicit
method like rkf45. Unlike the 6 = 0.01 case, the problem is very stiff for § = 0.00001. Stiffness
can cause numerical instability if a large integration step is used, even if the function is essentially
constant. In fact, this is the usual definition for the term “stiffness”; a very small step size is quite
expected if an ezplicit method is used to solve a stiff problem, even though accuracy requirements
could be satisfied with much larger integration steps. This is why an explicit method is definitely not
the method of choice for such kind of problems. Nevertheless, rkf45 was able to solve the problem
with great accuracy, albeit excessive computational effort was needed.

For comparison, the Fortran subroutine DLSODAR takes only 224 integration steps to solve
the problem for § = 0.00001, with the same settings as in rkf45 (solution obtained by the Fortran
solver is plotted in Fig. [[0l) It is obvious that DLSODAR, which is a solver specifically designed
for non-stiff and stiff problems as well, is much more efficient in this case. Note, however, that the
problem solved here is extremely stiff for the purpose of demonstrating the meaning of stiffness, in
an extreme case. This explains the huge number of integration steps taken by rkf45; in practice,
many stiff problems do not need such a huge amount of computations to be solved, even if an explicit
method like rkf45 is used.
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load ("rkf45.mac")$
x_start:0$ x_end:4$ funcs:[yl,y2|$ equs:[998xy1+1998xy2,—999xy1—1999xy2|$
eigenvalues(jacobian (equs,funcs)) ;

sol:rkf45(equs,funcs,|1,0],[x,x start,x end|,report=true)$
plot2d (|| discrete ;,map(lambda(|u|,part(u,|[1,2])),sol)],
[discrete ;map(lambda([u],part(u,[1,3])),sol)]],
[style,[lines,4]],[xlabel,"x"],[ylabel,"y 1,y 2"],
[legend,"y 1(t)","y 2(t)"],[psfile,"Stiff 2a.eps"])$
plot2d (|| discrete ;,map(lambda(|u|,part(u,|[1,2])),sol)],
|discrete ;map(lambda(|u|,part(u,|[1,3])),sol)]],
[x,x start,0.02],[style,[linespoints,4]|,[point type,bullet],
[xlabel,"x"],[ylabel,"y 1,y 2"],[legend,"y 1(t)","y 2(t)"],
[gnuplot preamble,"set_key_center_right"] [ psfile ,"Stiff 2b.eps"])$
vl _exact(x):=2xexp(—x)—exp(—1000%x)$
y2_exact(x):=—exp(—x)-+exp(—1000%x)$
errors: part (map(lambda(|u] ,[abs(yl_exact(u[l])—u[2]),abs(y2_exact(u[l])—u[3])]),
sol),allbut(1))$
print ("Maximum_actual_error:" Imax(flatten(errors)))$

Listing 8: Maxima program for solving Eqs. (I3).

3.2.2 A linear stiff problem.

A very common example of a stiff initial value problem is

1 — 998y, + 1998y, y1 (0) = 1 (13)
B2 — 999y, — 1999y, y2(0) = 0
(see, e.g. Press et all (1992, Eqs. (16.6.1-16.6.2)).) The coefficients in the right-hand side of these

equations may vary in the literature, but the general idea is the same: the derivatives %,% depend

strongly on the functions y; and ys. The usual test for stiffness is to derive the Jacobian of the right-
hand side of the differential equations, and compute its eigenvalues. In this case, the eigenvalues of
the Jacobian,

0 (998y1 + 1998y2, —999y; — 1999ys) [ 998 1998 ] (14)

7= 9 (y1, y2) 1 =999 —1999

are A\ = —1 and Ay = —1000, as one can easily verify using Maxima. The fact that [Aa] > |A\] is a
clear indication of stiffness. Furthermore, the stiff nature of a problem can be verified if an analytic
solution is available. In our example, the partial solution that satisfies the initial conditions is

{ g1 (z) = 2% — 1000z

Yo (1) = —eT 4 1000z (15)

which can be easily obtained in Maxima. Now, the reason of stiffness (and, consequently, numerical
instability) is the term e~10%0% which is important for very small values of z, but it is completely
negligible otherwise (it becomes essentially zero very quickly.)
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Fig. 11: Graphical output of Listing [8
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The Maxima program that solves the stiff problem (I3]) is shown in Listing 8 The essential
part is the call of rkf45, which does not differ from that of any other program solving a system of
differential equations (the problem is solved using default absolute tolerance, 1076.) Let us have a
look at the report now:

Info: rkf4b:
Integration points selected: 1473
Total number of iterations: 1695
Bad steps corrected: 223
Minimum estimated error: 6.4847649710556282E-8
Maximum estimated error: 9.9734487940981384E-7
Minimum integration step taken: 2.4897150300248846E-5
Maximum integration step taken: 0.0043726569115022

What we see here is that 1473 integration points were selected. Bad (but refined and corrected)
steps occured 223 times; such a large number of bad steps is rather common in stiff problems, but
it is not an indication of stiffness by itself.

There is one interesting fact that needs to be discussed here. The algorithm estimated that
the maximum error is ~ 9.98 x 1077, marginally lower than requested accuracy, as usual. In this
particular example, the exact analytic solution is available, so we can check the accuracy of the
numerical solution obtained. The actual maximum error is ~ 5.47 x 1079, In other words, actual
error is more than two orders of magnitude lower than estimated error. This is unusual, because,
as already pointed out, rkf45 returns a solution more accurate than requested, but the actual error
is typically close to the error estimated by the algorithm. However, it is easy to understand what
happened. The problem is stiff, so integration step needed to be kept small, even though a larger step
would satisfy accuracy requirements. This means that, in stiff problems, the results are expected
to be considerably more accurate than requested, exactly because a very small integration step will
be used, due to numerical stability requirements. This is actually the case here, and it is a clear
indication of stiffness.

The graphical output of the program is shown in Fig. [[Il The “vertical” segments of the curves
near x = 0 are not artifacts of the plotting utility. It is the exact behavior of the solution; the values
of y1 (x) and w2 (z) change extremely rapidly at very small values of z, due to the factor e~1000%
involved in Egs. (I5]). However, the algorithm was able to detect this behavior and act accordingly,
by reducing the step as required. In fact, rkf45 has selected 167 integration points (more than
11% of the total points) in a tiny interval near the origin, = € [0,0.02] (0.5% of the total integration
interval.) Solution for z € [0, 0.02] is plotted in Fig.IIb. One can see how fast both y; (z) and y2 (x)
are changing in that tiny interval, forcing rkf45 to reduce the step, and start to increase it again
after x ~ 0.01. The situation is similar to that in § 2.2 21and §[2.2.3] but in the present case the need
for a small step size is much more apparent. It is worth emphasizing, however, that, although the
integration step is increasing after x ~ 0.01, it is still kept relatively small; 1306 integration points
were needed for x € [0.02,4], which is too much, considering the smooth behavior of the solution in
that interval. Again, this is due to the stiffness of the problem; integration step size is kept small
because of stability (not accuracy) requirements. A different problem, with a solution similar to that
in Fig. [Th (but without the steep part of the curve near = 0) would need much less integration
points to be solved, with the same accuracy requirements.
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3.2.3 A stiff van der Pol oscillator.

In § 224 an initial value problem involving the var der Pol differential equation was solved. In this
section we shall solve the problem for a higher value of the dumping parameter, p, which makes
the problem stiff. We shall use a different form of the differential equation, however (see, e.g.,

Hairer & Wanner (2002), Eq.. (1.5"),)

le_:?:l<(1—x2)cjl—f—x>:0, {d_f(o) . (16)

€ dt lx=0

where € is a positive parameter, corresponding to % in Egs. ). Egs. ([I6) are more convenient
for stiff problems, because the integration interval does not need to be changed, depending on the
parameter, as it was the case in Eqs. ({]); instead, integration interval is fixed to t € [0,2]. Low
values of e correspond to stiff problems; in this example, we shall use the value ¢ = 0.01.

In order to solve the problem, the second-order differential equation must be transformed to a
system of two first-order differential equations, as in § 2.2.41 By putting = = 1, ‘zl—f = x9, Eqs. (18]

are written as p
(& 220 a2 (17)
G = c((l—af)z—m) z2(0) = 0
Listing [ shows the Maxima program that solves this problem. Graphical output of the program
is shown in Fig. [2} Note the peaks of ‘fl—f in Fig. [2h, which are actually the reason of stiffness in

this problem. Solution is initially computed with default accuracy tolerance, 1076, Report given by
rkf45 in that case is

Info: rkf45:
Integration points selected: 2148
Total number of iterations: 2165
Bad steps corrected: 18
Minimum estimated error: 3.7395389218163665E-8
Maximum estimated error: 8.8569168942399216E-7
Minimum integration step taken: 6.08069431864205E-5
Maximum integration step taken: 0.0027205802470264

In this case, 2148 integration points were needed. Minimum integration step is ~ 6.1 x 1075 — very
small, compared to the integration interval, [0,2]. Such a small step is actually needed in the steep
parts of the curve 4. In particular, 664 integration points (~ 31% of the total points) were used in
the interval t € [0.8, 1], where the first peak of dx lies, and a similar amount of integration points is
used for the second peak.

Apparently, a fixed-step method would fail to compute the solution accurately, unless a very
small integration step would be used globally, which would result in higher computational times. In
this particular example, a fixed-step Runge-Kutta method of fourth order would need at least 32891
integration points to achieve an accuracy equal to that obtained by rkf45 using 2148 integration
points. In terms of function evaluations (which is often used as a measure of the computation time,)
a Runge-Kutta method of fourth order would thus need 131560 function evaluations, while rkf45
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load ("rkf45.mac")$
t_start:0% t_end:2$ epsilon:le—2%
funcs:[x1,x2]|$ equs:[x2,((1—x1"2)xx2—x1)/epsilon|$

sol:rkf45(equs,funcs,|2,0],[t,t start,t end|,report=true)$
plot2d (|| discrete ;,map(lambda(|u|,part(u,|[1,2])),sol)],

[discrete ;map(lambda([u],part(u,[1,3])),sol)]],
[style,[lines,4]],[xlabel,"t"],[ylabel ,"x(t),_x"(t)"],
[legend,"x(t)","x’(t)"],|gnuplot preamble,"set_key_top_left"],
| psfile ,"Stiff 3a.eps"|)$

plot2d (| discrete ,map(lambda(|u],part (u,allbut(1)))
[color ,magental| ,[xlabel,"x"],[ylabel ,"x’ "],

,sol)],[style,lines [4]],
[ psfile ,"Stiff 3b.eps"])$

sol:rkf45(equs,funcs,|2,0],[t,t start,t end|,absolute tolerance=be—3,
report=true)$

plot2d (| discrete ,map(lambda(|u],part(u,[1,2])),sol)],[x,0.8,1],
[style,[linespoints,4]||,[xlabel ,"t"],[ylabel ,"x(t)"],
[legend,"adaptive_step_size_(rkf45_results)"|,[ psfile,"Stiff 3c.eps"|)$

plot2d ([discrete ;map(lambda(|u],part(u,[1,3])),sol)],[x,0.8,1],
[style,|[linespoints,4||,|xlabel ,"t"|,[ylabel,"x’(t)"],|color,red|,
[legend,"adaptive_step_size_(rkf45_results)"|,|psfile,"Stiff 3d.eps"|)$

sol_rk:rk(equs,funcs,[2,0],[t,t_start,t_end,(t_end—t_start)/(length(sol)—1)])$
plot2d ([ discrete ;map(lambda(|u],part(u,|[1,2])),sol_rk)]|,[x,0.8,1],
|style,|[linespoints,4||,|xlabel ,"t"|,[ylabel ,"x(t)"],
[legend,"fixed _step_(rk_results)"|,[psfile ,"Stiff 3e.eps"])$
plot2d ([ discrete ;map(lambda(|u],part(u,[1,3])),sol_rk)],[x,0.8,1],
[style,[linespoints,4]||,[xlabel ,"t" ], [ylabel ,"x’(t)"],
[legend,"fixed _step_(rk_results)"],[color,red],[ psfile,"Stiff 3f.eps"])$

Listing 9: Maxima program for solving Eqs. (7).
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Fig. 12: Graphical output of Listing @ Figs. (a) and (b) correspond to solution obtained
using rkf45 with default absolute error tolerance, 107% Figs. (c¢) and (d) correspond to

solution obtained with absolute error tolerance set to 5 x 1073.

For comparison, Figs. (e)

and (f) correspond to solution obtained by rk, using the same number of integration points,

as in (c) and (d).
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needs 12990 function evaluations (taking into account that 18 steps were rejected.) In other words,
rkf45 is about ten times faster in this example.

To visualize the difference between rkf45 and a fixed-step method, we solve the problem again,
this time with absolute tolerance set to 5 x 1072, This would reduce the integration points needed,
so that it will be easier to see the difference graphically. Indeed, report given by rkf45 is now

Info: rkf4b:
Integration points selected: 291
Total number of iterations: 335
Bad steps corrected: 45
Minimum estimated error: 2.953992239004648E-5
Maximum estimated error: 0.0049405216100875
Minimum integration step taken: 5.0200898447719971E-4
Maximum integration step taken: 0.019136888549425

That is, only 291 integration points were needed, while solution returned is still accurate to at least
two decimal digits. Results obtained that way are shown in Figs. [2{I2l, where solution is plotted
around the first peak of Cé—f. We also solve the problem using Maxima’s function rk (a fixed-step
method); we set the fixed integration step in rk so that a total of 291 integration points are used,
as in rkf45 above. Plots of the results obtained that way are shown in Figs. [2k{I2F. It is obvious
that a fixed-step method fails to give an accurate solution.

3.2.4 The Brusselator.

The Brusselator (1D diffusion) is an initial value problem, consisting of two first-order differential
equations, together with two initial conditions. It is included in several collections of stiff initial value
problems (see, e.g., Hairer & Wannei (IZDlld), Nowak et all (IZQld)) Strictly speaking, the problem
is not very stiff, but it is certainly very interesting as a test for initial value problem solvers. The
typical form of the Brusselator equations found in the literature is

{% = A+yiye—(B+ 1y {yl(O) =1 (18)
2 = By -yl ’ Y2 (0) = 4.2665 °

where A = 2, B = 8.533, and the problem is solved for x € [0, 20].

A Maxima program for solving Eqs. (8] is given in Listing Solution obtained with default
absolute tolerance is shown in Fig.[[3] where it is apparent that both y; () and ys (x) exhibit abrupt
changes and very high slopes periodically. As in all previous cases, rkf45 detected this behavior
and reduced integration step size accordingly. Report given by rkf45 is

Info: rkf45:
Integration points selected: 1115
Total number of iterations: 1150
Bad steps corrected: 36
Minimum estimated error: 5.3027036774583149E-8
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load ("rkf45.mac")$
x_start:0$ x_end:20$ y start:[1,4.2665|$ A:2$ B:8.533%
equs : [Aty1”2xy2—(B+1)*yl,Bryl—yl~2xy2| $

sol:rkf45(equs,|yl,y2|,y start,[x,x start,x end|,report—true)$
plot2d (|| discrete ,map(lambda(|u],part(u,|1,2])),sol)],
|discrete ;map(lambda(|u|,part(u,[1,3])),sol)]|,[style,|lines, 4]],
[ylabel "y 1,y 2"],[legend,"y 1(x)","y 2(x)"],[psfile,"Stiff 4a.eps"])$

plot2d ([[discrete ,map(lambda([u],part(u,[1,2])),sol)],
|discrete ;map(lambda(|u|,part(u,[1,3])),s0l)]]|,[x,5.15,5.4],
[style,|linespoints,4||,|point_type,bullet],
[ylabel,"y 1,y 2_(rkf45_results)"]|,
[legend,"y 1(x)","y 2(x)"],[psfile,"Stiff 4b.eps"]|)$

sol _rk:rk(equs,|yl,y2],y_start,
[x,x start,x end,(x_end—x_start)/(length(sol)—1)])$
plot2d (|| discrete ;,map(lambda(|u|,part(u,|[1,2])),sol_rk)]|,
[discrete ;map(lambda(|u],part(u,[1,3])),sol_rk)]|,[x,5.15,5.4],
[style,[linespoints,4]||,[point_type,bullet],
[ylabel,"y 1,y 2_(rk_results)"|,
[legend,"y 1(x)","y_2(x)"|,[psfile,"Stiff 4c.eps"|)$

Listing 10: Maxima program for solving Eqgs. (IS).
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Maximum estimated error: 9.8233659815093057E-7
Minimum integration step taken: 3.3850814947041446E-4
Maximum integration step taken: 0.21818753157269

We see that 1115 integration points were selected by rkf45. This large number of integration points
can be explained by the very high slopes of y; (z) and y2 (z). Because of this, minimum step size is
also very small, ~ 3.4 x 1074,

It is easy to do estimations about the computational time, as in § B223l In this example, a
fixed-step Runge-Kutta method of fourth order would need at least 59084 integration points to
achieve the same accuracy as in rkf45 above. This means that 236332 function evaluations would
be needed, while rkf45 needs 6900 function evaluations (we take into account that 36 steps were
rejected.) Consequently, rkf45 is about 34 times faster in this example.

For comparison, we solve the problem again, this time using a fixed-step method (rk); we set
the fixed step size so that rk uses 1115 integration points, as in rkf45 above. Results obtained by
rkf45 and rk are plotted in Fig. [[4} we focus on the interval = € [5.15,5.4], where both y; (z) and
y2 (z) are very steep. Although both methods use exactly the same number of integration points, rk
fails to compute an accurate solution due to its fixed step size; integration points are just distributed
uniformly along the integration interval, and thus only a 14 integration points lie in the small interval
[5.15,5.4] (this is only 1.25% of the total integration interval.) On the other hand, rkf45 reduced
the step size in that interval, so that 207 integration points (=~ 18.6% of the total integration points)
were selected for x € [5.15,5.4]. That way, rkf45 managed to get an accurate solution.
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