
Finite Fields Computations in Maxima

Fabrizio Caruso caruso@dm.unipi.it

Jacopo D’Aurizio elianto84@gmail.com

Alasdair McAndrew amca01@gmail.com

Volker van Nek volkervannek@gmail.com

April, 2008 - July, 2013

This file documents a Maxima package for computations in finite fields. It is suitable for teach-
ing and exploration. The first version of the package was based on the paper “Finite Fields
Manipulations in Macsyma” by Kevin Rowley and Robert Silverman, SIGSAM 1989, but for
which the source code is long gone. Meanwhile it contains lots of new features and optimizations
implemented by Fabrizio Caruso and Jacopo D’Aurizio.

A full review was done in 2012 and 2013 by Volker van Nek. Most of the functions described
below became core functions and some function names have been modified. If you use a version
of Maxima prior to 5.31 please refer to an appropriate version of this file or alternatively load
the necessary files from current sources. These are src/numth.lisp (all basic Galois Fields
functions) and share/contrib/gf/gf.mac (square and cubic roots). If speed matters compile
these two files and load the binaries.

In version 5.29 and later only for root computations it is necessary to load gf.mac.

Tests for basic computations in Galois Fields are located in src/rtest numth.mac, tests for
root computations in share/contrib/gf/gf test.mac. Tests can be performed by
batch(<path to test file>, test).

Getting started

All user commands are prefixed with “gf_”. All you need to start is to enter the parameters for
your field. All fields in this package are of the form

Fp[x]/m(x)

where p is a prime number and m(x) is an polynomial irreducible over Fp. If the degree of m(x)
is n, the the finite field will contain pn elements, each element being a polynomial of degree
strictly less than n, and all coefficients being in {0, 1, . . . , p − 1}. Such a field is called a finite
field or Galois field of order pn, and is denoted Fpn . Note that although there are many different
irreducible polynomials to choose from, if m(x) and n(x) are different polynomials irreducible
over Fp and of the same degree, then the fields

Fp[x]/m(x)

and

Fp[x]/n(x)

are isomorphic.

1

In these fields, addition and subtraction are performed on the coefficients modulo p, and mul-
tiplication and division modulo m(x).

Given a prime number p and a polynomial m(x) you can create a field by using the command
“gf_set_data(p, m(x))”. gf_set_data checks that p is prime, and it also checks whetherm(x)
is irreducible over Fp. If these conditions are met, a primitive element in this field is computed
and some pre-calculations are performed. Maxima returns a Lisp structure containing the fields
data which is suitable for later use by “gf_set_again(gf_data)” if needed again (see below).
Some of these data can be viewed by “gf_info()” and “gf_infolist()”.

(%i1) F16 : gf_set_data(2, x^4+x+1);

(%o1) Structure[GF −DATA]

(%i2) gf_info()$

characteristic = 2
reduction polynomial = x4 + x+ 1
primitive element = x
nr of elements = 16
nr of units = 15
nr of primitive elements = 8

In case there is no irreducible polynomial m(x) available it is sufficient to set an exponent
instead. E.g. “gf_set_data(2, 4)” returns the same as “gf_set_data(2, x^4+x+1)”.

In addition to gf_set_data there is a command “gf_minimal_set(p, m(x))” to allow basic
arithmetics without checking irreducibility and without computing a primitive element.

Having set up the field, we can now perform arithmetic on field elements:

Addition/subtraction. These are performed with the commands “gf_add” and “gf_sub”. In
the particular field entered above, since all arithmetic of coefficients is performed modulo 2,
addition and subtraction are equivalent:

(%i3) a : x^3+x;

(%o3) x3 + x

(%i4) b : x^3+x^2+1;

(%o4) x3 + x2 + 1

(%i5) gf_add(a, b);

(%o5) x2 + x+ 1

Multiplication. This is performed with the command “gf_mult”:

(%i6) gf_mult(a, b);

(%o6) x3 + x+ 1

2

Inversion and division. The inverse of a field element p(x) is the element q(x) for which their
product is equal to 1 (modulo m(x)). This is performed by “gf_inv”. In a finite field, division
is defined as multiplying by the inverse; thus

a(x)/b(x) = a(x)(b(x))−1.

These operations are performed with the commands “gf_inv” and “gf_div”:

(%i7) gf_inv(b);

(%o7) x2

(%i8) gf_div(a, b);

(%o8) x3 + x2 + x

(%i9) gf_mult(a, gf_inv(b));

(%o9) x3 + x2 + x

Exponentiation. To raise a field element to an integer power, use “gf_exp”:

(%i10) gf_exp(a, 14);

(%o10) x3 + x2

(%i11) gf_exp(a, 15);

(%o11) 1

Random elements. Finally, a random element can be obtained with “gf_random()”:

(%i12) makelist(gf_random(), i,1,3);

(%o12) [x2 + x+ 1, x2 + x, x3]

Primitive elements, powers and logarithms

The non-zero elements of a finite field form a multiplicative group; a generator of this group is a
primitive element in the field. The command “gf_primitive()” returns the already computed
primitive element:

(%i13) gf_primitive();

(%o13) x

Given that any non-zero element in the field can be expressed as a power of this primitive
element, this power is the index of the element; its value is obtained with “gf_index”:

(%i14) a : x^3+x$

(%i15) gf_index(a);

(%o15) 9

(%i16) is(a = gf_exp(x, 9));

(%o16) true

3

Since every element of the field can be represented as a polynomial

an−1x
n−1 + an−2x

n−2 + · · ·+ a2x
2 + a1x+ a0

where every coefficient ai satisfies 0 ≤ ai ≤ p − 1, a field element can also be considered as a
list:

[an−1, an−2, . . . , a2, a1, a0].

This list can be considered as the “digits” of a number in base p, in which the field element is
equivalent to the number

an−1p
n−1 + an−2p

n−2 + · · ·+ a2p
2 + a1p+ a0.

Thus every polynomial is equivalent to a number between 0 and pn−1; this number is obtained
by “gf p2n”. The reverse direction is given by “gf n2p”.

Since every non-zero field element a = a(x) is both equivalent to a number A and a power i of
a primitive element e, we can create an array of powers corresponding to particular numbers.
This array, gf powers, which is created by gf_make_logs, is defined as follows: its i-th element
(starting with zero) is the numerical form of the i-th power of the primitive element. Thus, if

a(x) ≡ A ≡ ei

where e is the primitive element, then the i-th element of gf powers is A. By definition we have
ep

n
−1 = 1.

The numbers A run over all integers from 1 to pn− 1, and the powers i run over all the integers
from 0 to pn−1, there is a corresponding “logarithm” array, gf logs. The logarithm table may
be considered to be indexed from 0 to pn − 1, and its i-th element (ignoring the 0-th) is the
power corresponding to that element.

The last array returned by gf_make_logs is gf_zech_logs which enables efficient addition.

(%i17) map(listarray, gf_make_logs());

(%o17) [[1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, 1],
[false, 0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12],

[false, 4, 8, 14, 1, 10, 13, 9, 2, 7, 5, 12, 11, 6, 3, false]]

(%i18) c : gf_exp(x, 4);

(%o18) x+ 1

(%i19) gf_p2n(c);

(%o19) 3

(%i20) gf_index(c);

(%o20) 4

(%i21) gf_logs[3];

(%o21) 4

(%i22) gf_powers[4];

(%o22) 3

The creation of the arrays gf logs and gf powers only has to be done once.

Logarithms. The array gf logs contains the logarithm of any non-zero element with respect
to the primitive element e of the field. The same holds for gf ind. The logarithm of any element
relative to the base of another can be obtained by the command “gf_log”:

4

(%i23) a : x^3+x$

(%i24) b : x^3+x^2+1$

(%i25) gf_log(a, b);

(%o25) 3

(%i26) is(a = gf_exp(b, 3));

(%o26) true

We conclude that, in our field, a = b3.

Primitive elements. A given field will have many primitive elements, and the command
“gf_primitive_p” tests whether an element is primitive:

(%i27) gf_primitive_p(a);

(%o27) false

(%i28) gf_primitive_p(b);

(%o28) true

Order. By definition, any element a of the field will satisfy ap
n
−1 = 1. The order of a is the

lowest power m for which am = 1. It will be a factor of pn−1, and is obtained with “gf_order”:

(%i29) gf_order(a);

(%o29) 5

(%i30) gf_order(b);

(%o30) 15

Minimal polynomials

Associated with every element a ∈ GF (pn) is a polynomial p(x) which satisfies:

1. p(a) = 0,
2. the coefficient of the highest power in p(x) is one,
3. for any other polynomial q(x) with q(a) = 0, p(x) is a divisor of q(x).

The polynomial p(x) is thus, in a very strict sense, the smallest polynomial which has a as a
root. It is the minimal polynomial of a. The command “gf_minimal_poly” calculates it:

(%i31) a : x^3+x$

(%i32) p : gf_minimal_poly(a);

(%o32) z4 + z3 + z2 + z + 1

To check this, substitute a for z in p:

(%i33) subst(a, z, p);

(%o33) (x3 + x)4 + (x3 + x)3 + (x3 + x)2 + x3 + x+ 1

(%i34) gf_eval(%);

(%o34) 0

5

An application: the Chor-Rivest knapsack cryptosystem

The Chor-Rivest knapsack cryptosystem is the only knapsack cryptosystem which doesn’t use
modular arithmetic; instead it uses the arithmetic of finite fields. Although it has been broken,
it is still a very good example of finite field arithmetic.

Assuming the two protagonists are Alice and Bob, and Alice wishes to set up a public key for
Bob to encrypt messages to her. Alice chooses a finite field Fpn = Fp[x]/m(x), and a random
primitive element g(x). She then computes ai = logg(x)(x + i) for every i ∈ Fp. She selects a
random integer d for which 0 ≤ d ≤ pn − 2, and computes ci = (ai + d) (mod pn − 1). Her
public key is the sequence ci, with the parameters p and n.

To encrypt a message to Alice, Bob encodes the message as binary blocks of length p which
contain n ones. Given one such block M = (M0,M1, . . . ,Mp−1), Bob creates the cipher text

c =

p−1
∑

i=0

Mici (mod pn − 1)

which he sends to Alice.

To decrypt c, Alice first computes r = (c−nd) (mod pn−1), and then computes u(x) = g(x)r

(mod m(x)). She then computes s(x) = u(x)+m(x) and factors s into linear factors x+ ti. The
ti values are the positions of the ones in the message block M .

Actually, the complete cryptosystem also involves a permutation, which is applied to the se-
quence ai to create ci. But for this example we are just interested in the field arithmetic.

We shall choose the example given in chapter 8 of HAC, but without the permutation. Here the
field is

GF (74) = F7[x]/(x
4 + 3x3 + 5x2 + 6x+ 2)

and the primitive element chosen is g(x) = 3x3 + 3x2 + 6 and the random integer d is 1702.

First, Alice must compute her public key:

(%i35) gf_set_data(7, x^4+3*x^3+5*x^2+6*x+2)$

(%i36) g : 3*x^3+3*x^2+6$

(%i37) gf_primitive_p(g);

(%o37) true

(%i38) a : makelist(gf_log(x+i, g), i,0,6);

(%o38) [1028, 1935, 2054, 1008, 379, 1780, 223]

(%i39) d : 1702$

(%i40) c : makelist(mod(a[i] + d, gf_order()), i,1,7);

(%o40) [330, 1237, 1356, 310, 2081, 1082, 1925]

Now Bob can encrypt a message to Alice; suppose one such block is [1, 0, 1, 1, 0, 0, 1], which is a
block of length 7 which contains exactly 4 ones.

(%i41) M : [1,0,1,1,0,0,1];

(%o41) [1, 0, 1, 1, 0, 0, 1]

(%i42) c : mod(sum(M[i] * c[i], i,1,7), gf_order());

(%o42) 1521

This last value is the ciphertext. Alice now needs to decrypt it:

6

(%i43) r : mod(c - gf_exponent() * d, gf_order());

(%o43) 1913

(%i44) u : gf_exp(g, r);

(%o44) x3 + 3x2 + 2x+ 5

(%i45) s : u + gf_reduction();

(%o45) x4 + 4x3 + 8x2 + 8x+ 7

(%i46) gf_factor(s);

(%o46) x (x+ 2) (x+ 3) (x+ 6)

The ti values are 0, 2, 3, 6 and these are the positions of the ones in M .

Matrices

There are commands for dealing with matrices over finite fields. E.g. “gf_invert_by_lu” for
inverting a matrix, and “gf_matmult” for multiplying matrices.

(%i47) gf_set_again(F16)$

(%i48) m : matrix([1,x^3+1], [x^2+1,x]);

(%o48) (

1 x3 + 1
x2 + 1 x

)

(%i49) m_inv : gf_invert_by_lu(m);

(%o49) (

x2 1
x3 + x x

)

(%i50) gf_matmult(m, m_inv);

(%o50) (

1 0
0 1

)

Normal bases

Any field GF (pn) may be considered as a vector space over Fp; one basis is the set

{1, x, x2, . . . , xn−1}

which is called the polynomial basis. A normal element is a field element e for which the set

{e, ep, ep
2

, . . . , ep
n−1

}

forms a basis. There are several commands for dealing with normal elements and bases. The
command “gf_random_normal()” finds a normal element by simply picking field elements at
random and testing each one for normality. Although this is a probabilistic algorithm, in practice
it works very quickly:

(%i51) gf_set_data(2, x^10+x^3+1)$

(%i52) p : gf_random_normal();

(%o52) x9 + x8 + x7 + x6 + x5 + x

7

The command “gf_normal()” is a brute force search through all field elements; in general it is
slower than gf_random_normal().

Having found a normal element the command “gf_normal_basis()” produces a matrix the
rows of which are the coefficients of the basis elements ep

k

. This command takes an optional
parameter; a polynomial p. If present, gf_normal_basis() checks if the field element is normal,
and if so, produces the matrix, otherwise prints an error message. If the parameter is not given,
gf_normal_basis() first finds a normal element, and then uses that element to produce the
matrix.

With the normal basis, the command “gf_normal_basis_rep(p, mat)” produces the normal
basis representation of p, with respect to the basis mat, as a list of coefficients. One attraction
of using normal bases is that much arithmetic can be simplified; for example, in a normal basis
representation, a power of the prime p is equivalent to a shift of coefficients:

(%i53) m : gf_normal_basis(p)$

(%i54) a : gf_random();

(%o54) x9 + x5 + x3 + x2 + 1

(%i55) gf_normal_basis_rep(a, m);

(%o55) [1, 0, 1, 0, 0, 1, 1, 0, 0, 0]

(%i56) gf_normal_basis_rep(gf_exp(a, 2), m);

(%o56) [1, 1, 0, 1, 0, 1, 0, 1, 1, 1]

Large fields

gf set data computes and stores powers xp
k

. In case gf set data was called gf_exp uses the
technique of modular composition. Otherwise gf_exp performs “repeated squaring”. gf_index
resp. gf_log use a Pohlig-Hellman reduction and Brent’s version of Pollard Rho.

(%i57) gf_set_data(2, x^20+x^3+1);

(%o57) Structure[GF −DATA]

(%i58) gf_info()$

characteristic = 2
reduction polynomial = x20 + x3 + 1
primitive element = x
nr of elements = 1048576
nr of units = 1048575
nr of primitive elements = 480000

(%i59) a : x^15+x^5+1;

(%o59) x15 + x5 + 1

(%i60) index : gf_index(a);

(%o60) 720548

(%i61) gf_exp(gf_primitive(), index);

(%o61) x15 + x5 + 1

(%i62) gf_exp(a, 3^12);

(%o62) x17 + x16 + x13 + x12 + x11 + x3 + x2 + x

8

Field extensions - the AES mixed columns operation

Above we described that an element of a finite field GF (pn) can be interpreted as a polynomial
f(x) = cn−1 x

n−1 + cn−2 x
n−2 + · ·+ c1 x+ c0 of degree n− 1 with coefficients in the prime field

GF (p).

An element of an extension field GF (qk) where q is a power of p, q = pn, can be interpreted as
a polynomial of degree k − 1 with coefficients in the base field GF (pn) which means that the
coefficients itself can be interpreted as polynomials of degree n−1 over GF (p) and all coefficient
arithmetic is carried out in GF (pn).

The reduction polynomial of degree k used to define GF (qk) must be irreducible over GF (pn).
Otherwise the defined extension is no field and not every non-zero element is invertible.

The AES mixed columns operation is for example defined by a multiplication in GF (2564) where
the non-irreducible polynomial x4 + 1 is used for reduction. The element a = 3x3 + x2 + x+ 2
used for the mixed columns multiplication is invertible, a−1 = B x3 + Dx2 + 9x + E in base
16, so the inverse operation is guaranteed.

The following session shows the mixed columns operation applied to one column represented by
the list [30, 5D,BF,D4]. (These four bytes are taken from the example on page 33 of the AES
specification document fips-197.pdf and they are the first four bytes that are modified by the
mixed columns operation there.)

User commands for field extensions are prefixed with “ef_” and for nearly every gf-function
there is a corresponding ef-function. The polynomial m(x) used for reduction can be defined
by “ef_minimal_set(m(x))” or “ef_set_data(m(x))”. The ef-functions then refer to the
previously by gf set data defined field as the base field.

(%i1) gf_set_data(2, x^8+x^4+x^3+x+1)$

(%i2) ef_irreducible_p(x^4+1);

(%o2) false

(%i3) ef_minimal_set(x^4+1);

(%o3) reduction polynomial = x4 + 1

(%i4) ibase : obase : 16$

(%i5) p : ef_l2p([30, 5D, 0BF, 0D4]);

(%o5) 30 x3 + 5D x2 + 0BF x+ 0D4

(%i6) a : 3*x^3+x^2+x+2;

(%o6) 3 x3 + x2 + x+ 2

(%i7) ef_p2l(pa : ef_mult(p, a));

(%o7) [0E5, 81, 66, 4]

(%i8) ai : ef_inv(a);

(%o8) 0B x3 + 0D x2 + 9 x+ 0E

(%i9) ef_mult(ai, a);

(%o9) 1

(%i10) ef_mult(ai, pa);

(%o10) 30 x3 + 5D x2 + 0BF x+ 0D4

(%i11) ibase : obase : 10.$

9

Square and cube roots

Multiple algorithms have been implemented in order to solve the square and cube root extraction
problem over Fp; all of them basically perform an exponentiation in a extension field (ie Fp2 =
Fp[x]/(x

2 + bx+ a) or Fp3 = Fp[x]/(x
3 − bx− a)) through a repeated-squaring scheme, reaching

so a complexity of O(n log(p)) multiplications in Fp; however, due to some differences in the
representation and multiplication of elements in the extension field, they do not have exactly
the same running time:

1. msqrt(a,p) returns the two square roots of a in Fp (if they exist) representing every k-th
power of x in Fp[x]/(x

2 + bx+ a) as the first column of the matrix Mk, where M is the
companion matrix associated with the polynomial x2 + bx+ a and b2 − 4a is a quadratic
non-residue in F

∗

p. It requires 5 log2(p) multiplications in Fp.
2. ssqrt(a,p) returns the two square roots of a in Fp (if they exist) using Shanks algorithm.

It requires 5 log2(p) multiplications in Fp.
3. gf_sqrt(a,p) returns the two square roots of a in Fp (if they exist) using the Muller

algorithm (an improved, shifted version of Cipolla-Lehmer’s) and should reach the best
performance, requiring only 2 log2(p) multiplications in Fp.

4. mcbrt(a,p) returns the cube roots of a in Fp (if they exist) representing every k-th power
of x in Fp[x]/(x

3 + bx + a) as the vector (M2,2,M2,3,M3,2) in the matrix Mk, where M
is the companion matrix associated with the polynomial x3 + bx+ a, irreducible over Fp

(Stickelberger-Redei irreducibility test for cubic polynomials is used). It requires 10 log2(p)
multiplications in Fp.

5. scbrt(a,p) follows the same multiplication steps of mcbrt(a,p), using a simpler poly-
nomial representation for the elements of the field extension. It requires about 11 log2(p)
multiplications in Fp.

6. gf_cbrt(a,p) returns the cube roots of a in Fp (if they exist) using the generalized
Shanks algorithm: it’s pretty fast, requiring about 4 log2(p) multiplications in Fp, being
so the candidate choice for cube root extraction.

Other implemented routines, using about the same ideas, are:

1. lucas(n), returning the n-th Lucas number through a Muller-like scheme; it requires
exactly 2 squarings and 3 sums for each bit in the binary representation of n, having
so a bit-complexity bounded by 2 log2(n)

3+ε, with ε depending on the adopted integer
squaring algorithm.

2. qsplit(p) and csplit(p), splitting a prime p over Z[i] and Z[ω], ie finding (a, b) such
that p = a2 + b2 (this is possible only when p is in the form 4k + 1) or p = a2 + ab + b2

(this is possible only when p is in the form 3k+1), by the reduction of a binary quadratic
form of the proper discriminant. They have the same complexity of the computation of a
single Jacobi symbol, O(log(p)2) bit-operations.

In Maxima 5.29 and later lucas is a core function.

(%i1) lucas(141);

(%o1) 293263001536128903730947142076

All the other functions listed above need to be loaded by “load(gf)”:

10

(%i2) load(gf)$

(%i3) msqrt(64, 1789); ssqrt(64, 1789); gf_sqrt(64, 1789);

(%o3) [1781, 8]

(%o4) [8, 1781]

(%o5) [1781, 8]

(%i6) mcbrt(64, 1789); scbrt(64, 1789); gf_cbrt(64, 1789);

(%o6) [4, 608, 1177]

(%o7) [4, 608, 1177]

(%o8) [4, 1177, 608]

(%i9) gf_factor(x^3-64, 1789);

(%o9) (x+ 612) (x+ 1181) (x+ 1785)

(%i10) map(lambda([n], n - 1789), %);

(%o10) (x− 1177) (x− 608) (x− 4)

(%i11) qsplit(1789);

(%o11) [5, 42]

(%i12) csplit(1789);

(%o12) [12, 35]

11

