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This paper describes a complete implementation of Ritt-Wu’s characteristic sets method in the

Maple system. The implemented algorithms include those with variants for computing charac-

teristic sets of (multivariate) polynomial sets, decomposing polynomial sets into ascending sets

and irreducible ascending sets, decomposing algebraic varieties into irreducible components, fac-

torizing polynomials over algebraic number fields and solving systems of polynomial equations.

Some modification and generalization of the basic algorithms and implementation strategies are

discussed. The timing statistics on a set of test problems is given.

1 Introduction and Notations

The method of characteristic sets was introduced by J. F. Ritt [5, 6] in the context of
his work on differential algebra in the early 1930’s and was revitalized and further devel-
oped by Wu Wen-tsün [11-13] through his recent work on mathematics-mechanization.
In addition to be a powerful tool for Wu’s general theory and method of mechanical the-
orem proving, the characteristic set method has proved efficient for solving a wide class
of problems in geometry and algebra (see the series of work in [14] for example). It has
been partially implemented by different research groups in China, USA and Austria [1, 3,
4, 14] for geometry theorem proving and solving other relevant problems. The author has
learned that an implementation of this method in the Reduce system is ongoing at the
University of Bath, England. However, to the best of our knowledge neither a complete
implementation exists nor a partial implementation has been generally available in current
symbolic and algebraic computation systems. The incompleteness of the existing imple-
mentations was mainly due to difficulties about polynomial factorization over successive
algebraic extension fields (for which there was a lack of general and efficient procedures)
and the determination of prime bases of ideals from their characteristic sets (for which no
simple and practical method was available). We have overcome the difficulties through the
discovery of a new method for polynomial factorization and the application of Gröbner
bases for determining the prime bases.

In this paper we describe a complete, general-purpose implementation of the char-
acteristic set method, considering mainly the zero structure of polynomial sets. This

∗This work is supported in part by the Austrian Ministry of Science and Research under ESPRIT
Basic Research Action 3125 (MEDLAR). A slightly revised version of this paper appeared in Automated
Practical Reasoning: Algebraic Approaches (J. Pfalzgraf and D. Wang, eds.), Springer-Verlag, Wien-New
York (1995), pp. 187–201.
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implementation has been included in the Maple share library as a package under the
name charsets1 and can be considered as a practical basis for designing and implement-
ing other related algorithms. The method of characteristic sets as well as its underlying
theory has been well developed by Ritt and Wu. It provides rich contents for dealing
with systems of (multivariate) polynomials (as well as differential polynomials). For the
present implementation we essentially follow Wu’s improved version of the method but
use the algorithmic form described in [8] by taking most of the remarks there into account.
The implemented algorithms include those for computing characteristic sets of polyno-
mial sets, decomposing polynomial sets into ascending sets and irreducible ascending sets,
decomposing algebraic varieties into irreducible components, factorizing polynomials over
algebraic number fields and solving systems of polynomial equations. We have supplied
several possible variants of these algorithms in order to make the package comprehensive
and flexible.

The characteristic set method has an important application to mechanical theorem
proving in geometries. On the basis of this package, the author has also developed a
new and rather powerful geometry theorem prover geother which provides again a first
complete implementation of Wu’s general method. The prover has been treated as part
of a geometry problem solver under development and is not included in this package. A
detailed description of geother will be published elsewhere.

In the later sections we shall describe 15 user level functions available in our package,
discuss the modification and generalization of some basic and utilized algorithms with our
implementation strategies, and present a set of test results for all functions with variants.
Before doing these, let us first explain our notations (which are similar to those used in
[8]) in order to avoid confusion with notations used by other authors.

In the whole package all input polynomials are in parameters u1, . . . , ud and variables
x1, . . . , xn with integer or rational coefficients. By a constant polynomial we mean one
involving only the parameters. While the order of the variables is fixed, say

x1 ≺ x2 ≺ · · · ≺ xn,

we call the variable with biggest index occurring in a non-constant polynomial F the
leading variable of F , denoted as2 lvar(F ). The leading coefficient of a non-constant
polynomial F with respect to lvar(F ) is called the initial of F , denoted as ini(F ). A
polynomial G is said to be reduced with respect to F if the degree of G in lvar(F ) is less
than the degree of F in lvar(F ).

A finite set {A1, A2, . . . , Ar} of polynomials is called a quasi-ascending set or a trian-
gular form if either r = 1 and A1 6= 0, or r > 1 and lvar(A1) ≺ lvar(A2) ≺ · · · ≺ lvar(Ar).
A quasi-ascending set AS is called an ascending set if in the case r > 1, Aj is reduced
with respect to Ai for each pair j > i. A quasi-ascending set AS is called a weak ascending
set if in the case r > 1, the initial of Aj is reduced with respect to Ai for each pair j > i.
A (weak, quasi-) ascending set is said to be contradictory if r = 1 and A1 is a non-zero
constant.

1The Maple code can be obtained via anonymous FTP at two sites: 129.132.101.33 (neptune) ETH
Zurich, Switzerland and 129.97.140.58 (daisy) University of Waterloo, Canada. The printings of the help
file and source code are also included in a technical report bearing the same title as this paper available
as RISC-Linz Series no. 91-25.0.

2When we speak about lvar(F ), it always implies that F is not a constant.
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Let G be any non-zero polynomial and AS={A1, . . . , Ar} a non-contradictory (weak,
quasi-) ascending set. One can pseudo-divide G successively by Ar, . . . , A1, considered
as polynomials in their leading variables. The final remainder R is called the pseudo-
remainder or simply the remainder of G with respect to AS.

Let PS be a finite, non-empty set of non-zero polynomials. The set of all non-zero
remainders of the polynomials in PS with respect to a (weak, quasi-) ascending set AS
is called the remainder set of PS with respect to AS. The set of all common zeros of
the polynomials in PS is denoted by Zero(PS). For any other non-zero polynomial G, we
write Zero(PS/G) for Zero(PS) \ Zero(G).

2 Description of User Functions

In this section we describe 15 user level functions which provide a great flexibility for using
our package. There are two trivial functions iniset and remset, of which iniset computes
the set of all distinct factors of initials of the polynomials in a non-contradictory (weak,
quasi-) ascending set AS and remset computes the remainder set of a polynomial set PS
with respect to AS. The other 13 non-trivial functions are given below.

2.1 charset and mcharset

A (weak, quasi-) ascending set CS is said to be a (weak, quasi-) characteristic set of a
polynomial set PS if any polynomials in CS is a linear combination of the polynomials
in PS with polynomial coefficients (i.e., CS is contained in the ideal generated by the
polynomials in PS) and the remainder set of PS with respect to CS is empty. For a
characteristic set CS of PS, we have therefore

Zero(CS/J) ⊂ Zero(PS) ⊂ Zero(CS),

where J is the product of initials of the polynomials in CS. A (weak, quasi-) ascending
set CS is said to be a modified (weak, quasi-) characteristic set of PS if

Zero(CS/J) ⊂ Zero(PS), Zero(PS/F ) ⊂ Zero(CS),

where J is the same as before and F is a non-zero polynomial.
The functions charset and mcharset compute respectively a (weak, quasi-) character-

istic set and a modified (weak, quasi-) characteristic set of any polynomial set. For these
two functions there is an option of 8 possible choices basset, wbasset, qbasset, charsetn,
wcharsetn, qcharsetn, trisetc and triset for the so-called medial sets. These medial sets cor-
respond respectively to those computed by the algorithms BasicSet, CharacteristicSetN,
TriangularSetC and TriangularSet described in [7, 8]. If basset, charsetn or trisetc is cho-
sen, then a characteristic set or a modified characteristic set is computed; if wbasset or
wcharsetn is chosen, then a weak characteristic set or a modified weak characteristic set
is computed; if qbasset, qcharsetn or triset is chosen, then a quasi-characteristic set or a
modified quasi-characteristic set is computed. The default is charsetn.
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2.2 charser, mcs, ecs and mecs

If a polynomial set PS and a sequence of (weak) ascending sets CS1, . . . , CSe are such
that

Zero(PS) =
e⋃

i=1

Zero(CSi/Ji),

where each Ji is the product of initials of the polynomials in CSi, then {CS1, . . . , CSe} is
called a (weak) characteristic series of PS. If they are such that

Zero(PS/G) =
e⋃

i=1

Zero(CSi/Fi),

where each Fi is a polynomial having non-zero remainder with respect to CSi, then
{CS1/F1, . . . , CSe/Fe} is called an extended (weak) characteristic series of PS/G.

Both the functions charser and mcs compute a (weak) characteristic series of PS, and
so do both the functions ecs and mecs an extended (weak) characteristic series of PS/G.
The only difference between charser and mcs and between ecs and mecs is: for the latter
which is in general fast for large problems, some factors are examined and allowed to be
removed during the internal computation of characteristic sets. Since we are unable to
judge which function is better, both are kept in the package. For these functions there
is an option of 5 medial sets basset, wbasset, charsetn, wcharsetn and trisetc, of which
charsetn is again the default. A characteristic series or an extended characteristic series
is computed if basset, charsetn or trisetc is chosen, and a weak characteristic series or a
modified weak characteristic series is computed if any of the others is chosen.

2.3 triser and csolve

The function triser computes, from a polynomial set PS, a sequence of ascending sets,
weak ascending sets or quasi-ascending sets CS1, . . . , CSe such that

Zero(PS) =
e⋃

i=1

Zero(CSi/Ji),

where each Ji is the product of initials of the polynomials in CSi. It is designed mainly to
prepare a sequence of triangular forms for solving the corresponding system of polynomial
equations. The function csolve finds all solutions of a system of polynomial equations. It
basically uses the function triser to prepare a sequence of triangular forms and then solves
each triangular form by successive substitution, where the Maple function solve is used
for the resolution of univariate polynomial equations.

2.4 qics, ics and eics

If all polynomials in the (weak) ascending sets of a characteristic series of PS are irre-
ducible, then the (weak) characteristic series is said to be quasi-irreducible. If all ascending
sets of a characteristic series or an extended characteristic series of PS are irreducible,
then the characteristic series or extended characteristic series is said to be irreducible.
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The functions qics, ics and eics compute respectively a quasi-irreducible (weak) char-
acteristic series, an irreducible characteristic series, and an extended irreducible charac-
teristic series of a polynomial set PS or PS/G. For qics there is an option of 5 medial sets
basset, wbasset, charsetn, wcharsetn and trisetc too. A quasi-irreducible weak characteristic
series is computed if wbasset or wcharsetn is chosen, and a quasi-irreducible characteristic
series is computed if one of the others is chosen. For ics and eics, an option of 3 medial
sets basset, charsetn and trisetc is allowed. In all three functions charsetn is again the
default.

2.5 ivd

If a polynomial set PS and a sequence of polynomial sets VS1, . . . , VSt are such that

Zero(PS) =
t⋃

i=1

Zero(VSi),

and the algebraic variety defined by VSi is irreducible for all i, then the above zero decom-
position is called an irreducible decomposition of the algebraic variety defined by PS, and
VS1, . . . , VSt are called the defining sets of irreducible components of the decomposition.

The function ivd computes a sequence of irredundant defining sets of the irreducible
decomposition of the algebraic variety defined by a polynomial set PS. For this function,
there is again an option of 3 medial sets basset, charsetn and trisetc with charsetn as
default.

2.6 cfactor

LetAS = {A1(u, y1), A2(u, y1, y2), . . . , Ar(u, y1, y2, . . . , yr)} (where u stands for u1, . . . , ud)
be an irreducible ascending set and F = F (u, y1, . . . , yr, y) any polynomial in u, y1, . . . , yr,
y with integer or rational coefficients. Consider F as a polynomial in y and suppose its
leading coefficient has non-zero remainder with respect to AS. The function cfactor com-
putes an irreducible factorization of F over the algebraic number field ~Q(u, y1, . . . , yr),
where ~Q denotes the rational number field, u1, . . . , ud are transcendental elements and
y1, . . . , yr are algebraic elements with each yi having minimal polynomial Ai(u, y1, . . . , yi).

3 Modifications and Strategies

The theory of characteristic sets developed by Ritt and Wu provides a constructive method
for dealing with systems of polynomials (as well as differential polynomials). However,
from a computational aspect many details have to be carefully taken into account for the
sake of efficiency. These details are out of what Ritt was concerned. It was Wu who
recognized the power of Ritt’s method and considerably improved the method both in
theory and in practice by bringing to it many new and important ideas. Through the
design and implementation of our package we have made several further modifications
and improvements and adopted a number of strategies. It is not possible to list all of
them here but we want to mention a few as follows, of which some are given as remarks
in [8].
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3.1 Modification of the Pseudo-Division

The basic operation underlying all characteristic-set-based algorithms is the pseudo-
division of two polynomials F and G with respect to a variable x. While dividing G
by F , one gets a remainder formula of the form

Is ·G = Q · F +R,

where I is the leading coefficient of F in x. The integer s is determined to be as smallest so
that the formula holds true according to Wu. Such a choice of the smallest s is important
for reducing the degree and size of the remainder R. Now let us modify the above formula
by replacing Is with Is11 · · · Isee , where I1, . . . , Ie are all the distinct irreducible factors
of I, and choosing the smallest s1, . . . , se so that the corresponding remainder formula
holds still. For this modification the determination of R requires GCD (greatest common
divisor) computation and thus takes more time at every individual step. However, we
have observed that the modification can often avoid some redundant factors so that the
subsequent computation profits, in particular, when the occurring polynomials become
large. So in our package this modified pseudo-division is used.

3.2 Generalization of the Characteristic Set Algorithm

The characteristic set algorithm has several variants. Our implementation of this algo-
rithm is based on a generalization described in [7]. We use the notion of medial sets of a
polynomial set PS which are (weak, quasi-) ascending sets with rank not higher than that
of the (weak, quasi-) basic set of PS and in which all polynomials are linear combinations
of the polynomials in PS with polynomial coefficients. Thus, any (weak, quasi-) basic set
itself is a special (weak, quasi-) medial set of the polynomial set. We proved that in Ritt’s
original algorithm, basic set can be replaced by any medial set. Besides basic set itself
we have used in our implementation several other medial sets including those computed
by the algorithms CharacteristicSetN, TriangularSetC, TriangularSet described in [7, 8] and
by an algorithm designed for computing the so-called normal characteristic sets which
are necessary for our factorization method to be mentioned below. With the notion of
medial sets several variants of the characteristic set algorithm can be given in an uniform
manner.

3.3 Removing Possible Factors of Intermediate Polynomials

During the computation of characteristic sets, there appear inevitably some redundant
factors which are initials of other occurring polynomials. These factors should be removed
in order to control the expansion of polynomial size. If one allows to remove factors, then
the ascending sets computed by the characteristic set algorithm are no longer character-
istic sets in Ritt’s sense: they are what we call modified characteristic sets. Polynomials
in a modified characteristic set are not necessarily elements of the ideal generated by the
polynomials in the original set. If one considers only the zero structure of polynomial
sets such as the case of solving polynomial equations, the modified characteristic sets are
already well suited. If the removed factors are denoted by F1, . . . , Ft, then we have a zero
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relation of the form

Zero(PS) = Zero(CS/J) ∪
r⋃

i=1

Zero(PSi) ∪
t⋃

j=1

Zero(QSj),

where J = I1 · · · Ir · F1 · · ·Ft and PSi = PS ∪ {Ii}, QSj = PS ∪ {Fj}.
In the functions mcharset, mcs, mecs, triser, qics, ics, eics and ivd, we all allow to remove

possible factors. If the option of medial sets is triset or trisetc, we remove initials of the
previous polynomials as factors from the newly produced polynomials in the computation
of remainder sequence. Otherwise, we collect all the initials which have appeared in
the previous computation and remove them as factors from the subsequently produced
polynomials at certain stages. In all cases, the variables themselves as polynomials are
examined and removed if possible. This process is of course time-consuming and does not
seem to be recommendable for small problems. However, the removal of possible factors
is very crucial for large problems. During our experiments we have seen that for many
problems (e.g., Problem 4 as shown in Table 1) application of charset yields no result
after a great amount of computing time, whereas mcharset gets the desired results easily.
Since we are unable to predicate the computational cost for a given problem, we arrange
to remove factors in most of our functions in order to avoid the trouble caused by large
polynomials.

3.4 Polynomial Factorization

Polynomial factorization over both the rational number field and its algebraic extension
fields is required in our implementation. As for factorization over the rationals, we use the
Maple built-in function factor (either as a strategy for reducing the size of polynomials,
or for computing the quasi-irreducible characteristic series, or as a subfunction of our
procedure for factorizing polynomials over algebraic number fields).

To verify the reducibility of an ascending set, and if reducible, to decompose it into
irreducible ones (which are needed in the functions ics, eics and ivd), we have to factorize
polynomials over successive algebraic extensions of the rational number field which is
considered as a difficult problem in general. Except Chou’s implementation [1] which
can factorize quadratic polynomials, all other implementations of the characteristic set
method do not contain procedures for algebraic factorization. The general factorization
algorithms are too complicated and not available in Maple. The author has implemented
the factorization method presented in [2] which was considered suitable for our purpose.
Experiments demonstrate that the method is feasible only for factorizing quadratic and
cubic polynomials while degrees of the minimal polynomials are also not high. It is still
too slow for polynomials of high degree. Recently, the author has found another method
which can be used to factorize polynomials of rather high degree and reduces dramatically
the difficulty of our factorization problem. This method has been implemented in combine
with our early method as the function cfactor and used for the irreducible decomposition of
ascending sets. The full details of our new method with experimental results are described
in [10].

Since polynomial factorization is expensive in general, we have used some strategies
for carrying out the factorization at an appropriate stage. For example, to verify the
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reducibility of a characteristic set we do the test soon after a medial set is computed in
the option of charsetn and trisetc. Other strategies like factorizing initials and the removed
factors in some cases are also very helpful for speeding up the computation.

3.5 Determining the Bases of Ideals from their Characteristic Sets

In our implemented algorithm for decomposing algebraic varieties into irreducible com-
ponents, we first compute an irreducible characteristic series of the defining polynomial
set and then determine the prime bases of ideals from the ascending sets in the series.
For the latter an algorithm based on the Gröbner primbasissatz and Gröbner bases as
described in [9] is implemented, where the Maple function gbasis in the grobner package
is used for the computation of Gröbner bases.

3.6 Removing Redundant Branches of the Decomposition Tree

As argued in [9], the characteristic-set-based decomposition algorithms can be viewed
as for computing a multi-branch decomposition tree. The number of branches of the
tree can be hundred and thousand due to the recursive generation of initials. Some of
the branches are completely redundant. Strategies must be used to avoid redundant
computation in order to speed up the decomposition. In our implementation we have
adopted various strategies for obtaining an equivalent but simpler tree with an aim at
reducing the computing time and space. As most branches of the tree are produced from
the recursive generation of initials, we observed that it is often profitable to decrease
the depth and width of the decomposition tree by adjoining not the initials and the
removed factors but the distinct irreducible factors of them. Even though this requires
extensive polynomial factorization, the computation is not very expensive mainly because
the initials and remove factors are relatively simple.

We cut off some redundant branches during the computation of various characteristic
series according to a fact as follows: Let QS and QS′ be two polynomial sets associated
with two nodes of the decomposition tree of PS and QS ⊂ QS′. If the decomposition tree
of QS is already computed, then the decomposition tree of QS′ as a subtree of PS can be
cut away. After the characteristic series has been produced, we remove some redundant
ascending sets by another fact: For two ascending sets AS1 and AS2 of which the former
is irreducible, if with respect to AS1 the remainder set of AS2 is empty and the remainder
of J2 is non-zero, then Zero(AS1/J1) ⊂ Zero(AS2/J2), where Ji is the product of initials
of the polynomials in ASi for i = 1, 2, and thus AS1 can be removed. For the function
ivd, we also cut off some redundant branches by the affine dimension theorem in algebraic
geometry: The dimension of an irredundant component of a variety is not less than n−s,
where n is the number of variables and s the number of defining polynomials. Finally, all
the redundant components are removed by using a lemma of Wu [12].

3.7 Optimization of Variable Ordering

The time for computing characteristic sets and thus all relevant decompositions depends
heavily upon the choice of variable ordering. For example, if we order the variables in
Problem 4 as r ≺ z ≺ y ≺ x, then the characteristic set can be computed within one
second. Therefore, the optimization of variable ordering must be considered for some
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applications such as the decomposition of algebraic varieties. In our implementation, if
the variables are given as a set, a heuristically optimal variable ordering in the following
sense is used.

Let X be a set of variables and PS a set of polynomials in X. For any variable x ∈ X
we define

Ω(x, PS) = max
p∈PS

deg(p, x), ω(x, PS) = max{1, min
p∈PS

deg(p, x)},

Λ(x, PS) = number of elements in {p ∈ PS| deg(p, x) = Ω(x, PS)},

λ(x, PS) = number of elements in {p ∈ PS| deg(p, x) = ω(x, PS)},

∆(x, PS) = min
p∈PS,deg(p,x)=ω(x,PS)

Tdeg(lc(p, x)),

δ(x, PS) = min
p∈PS,degx(p)=ω(x,PS)

Term(lc(p, x)),

where deg(p, x) denotes the degree of p in x, lc(p, x) the leading coefficient of p with
respect to x, Tdeg(q) the total degree of q and Term(q) the number of actual terms in q.

Then, a partial order of the variables with respect to PS is introduced as follows:

1. If a variable x ∈ X occurs in one and only one polynomial p ∈ PS, then x has order
higher than all the others.

2. A variable x has order higher than the variable y if one of the following holds:

(a) Ω(x, PS) < Ω(y, PS);

(b) Ω(x, PS) = Ω(y, PS) but Λ(x, PS) < Λ(y, PS);

(c) Ω(x, PS) = Ω(y, PS),Λ(x, PS) = Λ(y, PS) but ω(x, PS) < ω(y, PS);

(d) Ω(x, PS) = Ω(y, PS),Λ(x, PS) = Λ(y, PS), ω(x, PS) = ω(y, PS) but λ(x, PS) > λ(y, PS);

(e) Ω(x, PS) = Ω(y, PS),Λ(x, PS) = Λ(y, PS), ω(x, PS) = ω(y, PS), λ(x, PS) = λ(y, PS)
but ∆(x, PS) < ∆(y, PS);

(f) Ω(x, PS) = Ω(y, PS),Λ(x, PS) = Λ(y, PS), ω(x, PS) = ω(y, PS), λ(x, PS) = λ(y, PS),

∆(x, PS) = ∆(y, PS) but δ(x, PS) < δ(y, PS).

Under this partial order, the variables in Problem 4 can be optimally reordered as
z ≺ x ≺ y ≺ r.

4 Test Results and Remarks

Since all the functions plus their options in our package lead to many variants, we are
unable to give a long list of test problems here due to the page restriction. We present
some test results by taking only 3 problems with given variable ordering for each function.
These problems were selected in a quite random way but so that they are representative
and proper for testing most of the functions. For instance, the problems 1, 2 and 3
are all chosen so that polynomial factorization over algebraic number fields is involved.
The experiments were made in Maple 4.3 running on an Apollo DN10000 under a UNIX
operating system. All timings are given in CPU seconds without excluding the time
for garbage collection. The timing statistics here aims at showing a rough magnitude
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about the computational cost of each function and does not necessarily reflect its overall
behaviour. For the computation on very similar problems may lead to much different
computing times while 3 test problems cannot say too much at all. In view of this we
add below a few remarks on each function based on our extensive experiments with other
problems.

Table 1. Timings for charset and mcharset

Problem 2 Problem 3 Problem 4

option charset mcharset charset mcharset charset mcharset

basset >1800 161.633 14.100 15.650 >1800 540.400

charsetn 27.116 22.733 14.100 15.650 >1800 540.400

trisetc 21.933 34.850 4.350 6.717 >1800 >1800

wbasset 714.200 30.266 6.750 6.133 >1800 >1800

wcharsetn 23.084 7.600 3.466 3.766 >1800 1606.883

qbasset 1.684 2.250 2.967 2.984 >1800 105.600

qcharsetn 1.600 2.100 1.967 2.100 >1800 21.184

triset 1.383 2.350 2.150 4.333 >1800 29.817

Table 2. Timings for charser and mcs

Problem 1 Problem 2 Problem 3

option charser mcs charser mcs charser mcs

basset 1.383 1.550 >1800 1751.050 48.516 64.588

charsetn 1.017 1.283 59.616 70.966 18.850 35.734

trisetc 0.917 1.467 49.983 77.316 24.450 97.050

wbasset 3.067 1.617 1277.667 415.517 18.050 25.950

wcharsetn 3.766 1.467 46.967 45.250 33.133 21.517

Table 3. Timings for ecs and mecs

Problem 1 Problem 2 Problem 3

option ecs mecs ecs mecs ecs mecs

basset 1.716 1.883 >1800 816.567 48.900 53.750

charsetn 1.367 1.500 60.750 59.784 20.217 21.133

trisetc 0.900 1.067 48.283 65.484 27.217 26.800

wbasset 3.350 4.083 821.250 230.400 17.616 18.616

wcharsetn 3.834 3.416 44.500 33.317 32.017 14.067

Table 4. Timings for qics and eics

Problem 1 Problem 2 Problem 3

option qics eics qics eics qics eics

basset 3.583 11.367 359.867 384.783 188.233 239.150

charsetn 2.950 10.100 65.417 80.666 109.733 107.284

trisetc 4.417 12.717 61.850 99.583 173.800 158.000

wbasset 3.616 111.100 79.916

wcharsetn 3.300 36.500 84.250
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Table 5. Timings for ics and ivd

Problem 1 Problem 2 Problem 3

option ics ivd ics ivd ics ivd

basset 10.533 12.616 369.100 381.683 279.733 352.000

charsetn 12.084 12.833 92.150 95.384 162.716 228.433

trisetc 12.950 14.983 61.334 75.650 274.150 398.583

Table 6. Timings for triser, csolve and cfactor

triser csolve

Problem 1 1.667 3.434

Problem 2 54.117 >1800

Problem 3 23.700 28.567

cfactor

Problem 5 4.884

Problem 6 7.883

Problem 7 12.850

Remark 1. For (modified) characteristic sets, the computation in the quasi-sense usually
is faster than that in the other senses, whereas the computation in the weak sense only
sometimes is faster than that in the standard sense. However, the quasi-sense is theo-
retically weak. For example, in this sense we are unable to compute the characteristic
series since the decomposition algorithm can no longer be guaranteed to terminate. Also,
the irreducibility of a quasi-ascending set cannot be well defined. In the same sense, the
computation is fast in general if the medial set qcharsetn, wcharsetn, charsetn, triset or
trisetc is chosen. It is rather slow when the medial set qbasset, wbasset or basset is used.
Here, the choice of basset results in Ritt’s original version, the choice of (w-, q-) charsetn
results in Wu’s improved version of the algorithm, and the choice of triset and trisetc
results in a version suggested by us.

Remark 2. charset sometimes is faster than mcharset for small problems, but it is slower
for large ones. Consequently, mcs and mecs are respectively faster than charser and ecs
for large problems. In general, the output of mcs and mecs is also more succinct than
that of charser and ecs. The computing times for charser and ecs, for mcs and mecs, and
for ics and eics may vary from each other as different strategies are used, but neither
of them in a pair seems superior to the other. In eics an extended zero decomposition
algorithm proposed by Wu [13] is implemented. It somewhat speeds up the computation
in most cases but produces additional polynomials whose manipulation may cost time at
other stages. Note that the implemented algorithms for the functions mcs, qics and ics
have a similar structure and all the three examine and remove possible factors, while qics
factorizes every polynomial in all ascending sets and ics decomposes all ascending sets
into irreducible ones. The function ics is used as the main subfunction of ivd.

Remark 3. The function triser is designed for computing a hybrid sequence of ascending
sets, weak ascending sets and quasi-ascending sets from a given polynomial set. The
first few characteristic sets are computed in the quasi-sense for ease and the others are
computed in the weak and standard senses in order to ensure the termination. This
function is faster than the others for computing the characteristic series in some cases
and may be used to prepare a sequence of triangular forms for polynomial equations
solving. Actually, the function csolve is mainly based on triser.
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Remark 4. During the implementation of our package we always keep in mind to attack
large problems, where the term large is said with respect to the computational cost.
Several strategies are used for this purpose and can reduce both the computing space and
time for a number of large problems, but they may in turn increase the cost for small
ones. Concerning the adoption of these strategies, we have difficulties to judge before
the computation which kinds of problems are large. For this issue the author guesses
that a careful analysis of the practical complexity for the used algorithms must be given
first. Also, one variant of an algorithm may be fast for some problems but totally slow
for others. We have tried to make choice from different algorithms and their variants by
examining the sort of input according to our own experience. However, this works well
only in some cases.

The characteristic sets and thus various related zero decompositions in general are
not unique. To avoid redundant or unpleasant output expressions, we have also arranged
to tidy up the output in case the postprocess is not expensive.
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Appendix. Test Problems

The source of the following test problems: Problems 1-5 are taken from the papers by D. M.
Wang, C. J. Butcher, W. T. Wu, M. Bronstein and P. S. Wang respectively. The polynomial F
in Problem 6 is one that has to be factorized for computing the irreducible zero decompositions
of PS in Problem 2. Problem 7 is a test example used by the author.

Problem 1. PS = {x24+x1x
2
4−x2x4−x1x2x4+x1x2+3x2, x1x4+x3−x1x2, x3x4−2x22−x1x2−1}

with variable ordering x1 ≺ · · · ≺ x4.

Problem 2. PS = {p1, . . . , p8} with variable ordering b ≺ c2 ≺ c3 ≺ a ≺ b3 ≺ b2 ≺ a32 ≺ b1,

where p1 = b1 + b2 + b3 − a− b, p2 = 2b2c2 + 2b3c3 − 1− b− 2b2 + 2ab,

p3 = 3b2c
2
2 + 3b3c

2
3 − a− 3ab2 + 4b+ 3b2 + 3b3,

p4 = 6b3a32c2 − a− 3ab− 6ab2 + 4b+ 6b2 + 6b3,

p5 = 4b2c
3
2 + 4b3c

3
3 − 1− b− 10b2 − 6b3 − 4b4 + 4ab+ 4ab3,

p6 = 8b3c3a32c2 − 1− 3b− 14b2 − 12b3 − 8b4 + 4ab+ 4ab2 + 8ab3,

p7 = 12b3a32c
2
2 − 1− b− 14b2 − 18b3 − 12b4 + 8ab+ 12ab2 + 12ab3,

p8 = 1 + 7b+ 26b2 + 36b3 + 24b4 − 8ab− 24ab2 − 24ab3.

Problem 3. PS = {y2 − p1,
∂p2
∂x1

,
∂p2
∂x2

,
∂p2
∂x3

,
∂p2
∂x4

,
∂p2
∂x5

,
∂p2
∂x6

,
∂p2
∂λ1

,
∂p2
∂λ2

,
∂p2
∂λ3
} with variable order-

ing x1 ≺ · · · ≺ x6 ≺ λ1 ≺ λ2 ≺ λ3 ≺ y, where p1 = (x4 + x5)(x5 + x6)(x6 + x4)x22x
2
1x

2
3,

p2 = p1 + λ1(x22x6 − 1) + λ2(x21x4 − 1) + λ3(x23x5 − 1).

Problem 4. PS = {x2 + y2 + z2 − r2, xy + z2 − 1, xyz − x2 − y2 − z + 1} with variable ordering

r ≺ x ≺ y ≺ z.

Problem 5. AS = {a4 + a3 + a2 + a+ 1} and F = 16x4 + 8x3 + 4x2 + 2x+ 1.

Problem 6. AS = {−1 + b+ 6b2 + 12b3} and F = 745092b− 252156 + 540900c+ 21032664c2b2 +

2010720b2+7117713c2b−132367c2+3076830c3−7843500c3b2+2792322c3b−3779244bc−10724400b2c+

21225240bc5 + 26306208b2c5 + 8257464c5 − 436536c4 + 6094008b2c4 +594432bc4.

Problem 7. AS = {r2− 2 + z2,−rz+ y+ 4y2} and F = −370x2y− 10x3 + 60x2z+ 4xy− 24zy+

74rzy + 2rzx+ 37rz − 37y + 12r3 − 24r with variable ordering z ≺ y ≺ x.

Note. This paper was written in Winter 1990 when the first version of charsets was
completed. It was accepted for publication in the Proceedings of DISCO ’92 (Bath,
April 13–15, 1992). However, the paper is not contained in the Proceedings (Springer
LNCS 721) because the editor did not receive its final camera-ready copy which the
author sent in April 1992. After charsets’s version 1.0 was included in the Maple share
library for distribution, several improvements have been incorporated into the package.
The up-to-date version of charsets is available via anonymous FTP on site 193.170.33.112
(ftp.risc.uni-linz.ac.at).
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