Previous: Cauchy Random Variable, Up: Functions and Variables for continuous distributions   [Contents][Index]

52.2.18 Gumbel Random Variable

Function: pdf_gumbel (x,a,b)

Returns the value at x of the density function of a \({\it Gumbel}(a,b)\) random variable, with b>0. To make use of this function, write first load("distrib").

The pdf is $$ f(x; a, b) = {1\over b} \exp\left[{a-x\over b} - \exp\left({a-x\over b}\right)\right] $$

Categories:Package distrib ·
Function: cdf_gumbel (x,a,b)

Returns the value at x of the distribution function of a \({\it Gumbel}(a,b)\) random variable, with b>0. To make use of this function, write first load("distrib").

The cdf is $$ F(x; a, b) = \exp\left[-\exp\left({a-x\over b}\right)\right] $$

Categories:Package distrib ·
Function: quantile_gumbel (q,a,b)

Returns the q-quantile of a \({\it Gumbel}(a,b)\) random variable, with b>0; in other words, this is the inverse of cdf_gumbel. Argument q must be an element of [0,1]. To make use of this function, write first load("distrib").

Categories:Package distrib ·
Function: mean_gumbel (a,b)

Returns the mean of a \({\it Gumbel}(a,b)\) random variable, with b>0.

The mean is $$ E[X] = a+b\gamma $$

(%i1) load ("distrib")$
(%i2) mean_gumbel(a,b);
(%o2)                     %gamma b + a

where symbol %gamma stands for the Euler-Mascheroni constant. See also %gamma.

Categories:Package distrib ·
Function: var_gumbel (a,b)

Returns the variance of a \({\it Gumbel}(a,b)\) random variable, with b>0. To make use of this function, write first load("distrib").

The variance is $$ V[X] = {\pi^2\over 6} b^2 $$

Categories:Package distrib ·
Function: std_gumbel (a,b)

Returns the standard deviation of a \({\it Gumbel}(a,b)\) random variable, with b>0. To make use of this function, write first load("distrib").

The standard deviation is $$ D[X] = {\pi \over \sqrt{6}} b $$

Categories:Package distrib ·
Function: skewness_gumbel (a,b)

Returns the skewness coefficient of a \({\it Gumbel}(a,b)\) random variable, with b>0.

The skewness coefficient is $$ SK[X] = {12\sqrt{6}\over \pi^3} \zeta(3) $$

(%i1) load ("distrib")$
(%i2) skewness_gumbel(a,b);
                            3/2
                         2 6    zeta(3)
(%o2)                    --------------
                                 3
                              %pi

where zeta stands for the Riemann’s zeta function.

Categories:Package distrib ·
Function: kurtosis_gumbel (a,b)

Returns the kurtosis coefficient of a \({\it Gumbel}(a,b)\) random variable, with b>0. To make use of this function, write first load("distrib").

The kurtosis coefficient is $$ KU[X] = {12\over 5} $$

Function: random_gumbel (a,b)
    random_gumbel (a,b,n)

Returns a \({\it Gumbel}(a,b)\) random variate, with b>0. Calling random_gumbel with a third argument n, a random sample of size n will be simulated.

The implemented algorithm is based on the general inverse method.

To make use of this function, write first load("distrib").


Previous: Cauchy Random Variable, Up: Functions and Variables for continuous distributions   [Contents][Index]