Next: , Previous: Noncentral Student's t Random Variable, Up: Functions and Variables for continuous distributions   [Contents][Index]

52.2.4 Chi-squared Random Variable

Let \(X_1, X_2, \ldots, X_n\) be independent and identically distributed \({\it Normal}(0, 1)\) variables. Then $$ X^2 = \sum_{i=1}^n X_i^2 $$

is said to follow a chi-square distribution with n degrees of freedom.

Function: pdf_chi2 (x,n)

Returns the value at x of the density function of a Chi-square random variable \(\chi^2(n)\), with n>0. The \(\chi^2(n)\) random variable is equivalent to the \(\Gamma\left(n/2,2\right)\).

The pdf is

$$ f(x; n) = \cases{ \displaystyle{x^{n/2-1} e^{-x/2} \over 2^{n/2} \Gamma\left(\displaystyle{n\over 2}\right)} & for $x > 0$ \cr \cr 0 & otherwise } $$
(%i1) load ("distrib")$
(%i2) pdf_chi2(x,n);
                   n/2 - 1   - x/2
                  x        %e      unit_step(x)
(%o2)             -----------------------------
                                n   n/2
                          gamma(-) 2
                                2
Categories:Package distrib ·
Function: cdf_chi2 (x,n)

Returns the value at x of the distribution function of a Chi-square random variable \(\chi^2(n)\), with n>0.

The cdf is $$ F(x; n) = \cases{ 1 - Q\left(\displaystyle{n\over 2}, {x\over 2}\right) & $x > 0$ \cr 0 & otherwise } $$

where Q(a,z) is the gamma_incomplete_regularized function.

(%i1) load ("distrib")$
(%i2) cdf_chi2(3,4);
                                                 3
(%o2)        1 - gamma_incomplete_regularized(2, -)
                                                 2
(%i3) float(%);
(%o3)                  0.4421745996289252
Categories:Package distrib ·
Function: quantile_chi2 (q,n)

Returns the q-quantile of a Chi-square random variable \(\chi^2(n)\), with n>0; in other words, this is the inverse of cdf_chi2. Argument q must be an element of [0,1].

This function has no closed form and it is numerically computed.

(%i1) load ("distrib")$
(%i2) quantile_chi2(0.99,9);
(%o2)                   21.66599433346194
Categories:Package distrib ·
Function: mean_chi2 (n)

Returns the mean of a Chi-square random variable \(\chi^2(n)\), with n>0.

The \(\chi^2(n)\) random variable is equivalent to the \(\Gamma\left(n/2,2\right)\).

The mean is $$ E[X] = n $$

(%i1) load ("distrib")$
(%i2) mean_chi2(n);
(%o2)                           n
Categories:Package distrib ·
Function: var_chi2 (n)

Returns the variance of a Chi-square random variable \(\chi^2(n)\), with n>0.

The \(\chi^2(n)\) random variable is equivalent to the \(\Gamma\left(n/2,2\right)\).

The variance is $$ V[X] = 2n $$

(%i1) load ("distrib")$
(%i2) var_chi2(n);
(%o2)                          2 n
Categories:Package distrib ·
Function: std_chi2 (n)

Returns the standard deviation of a Chi-square random variable \(\chi^2(n)\), with n>0.

The \(\chi^2(n)\) random variable is equivalent to the \(\Gamma\left(n/2,2\right)\).

The standard deviation is $$ D[X] = \sqrt{2n} $$

(%i1) load ("distrib")$
(%i2) std_chi2(n);
(%o2)                    sqrt(2) sqrt(n)
Categories:Package distrib ·
Function: skewness_chi2 (n)

Returns the skewness coefficient of a Chi-square random variable \(\chi^2(n)\), with n>0.

The \(\chi^2(n)\) random variable is equivalent to the \(\Gamma\left(n/2,2\right)\).

The skewness coefficient is $$ SK[X] = \sqrt{8\over n} $$

(%i1) load ("distrib")$
(%i2) skewness_chi2(n);
                               3/2
                              2
(%o2)                        -------
                             sqrt(n)
Categories:Package distrib ·
Function: kurtosis_chi2 (n)

Returns the kurtosis coefficient of a Chi-square random variable \(\chi^2(n)\), with n>0.

The \(\chi^2(n)\) random variable is equivalent to the \(\Gamma\left(n/2,2\right)\).

The kurtosis coefficient is $$ KU[X] = {12\over n} $$

(%i1) load ("distrib")$
(%i2) kurtosis_chi2(n);
                               12
(%o2)                          --
                               n
Categories:Package distrib ·
Function: random_chi2 (n)
    random_chi2 (n,m)

Returns a Chi-square random variate \(\chi^2(n)\), with n>0. Calling random_chi2 with a second argument m, a random sample of size m will be simulated.

The simulation is based on the Ahrens-Cheng algorithm. See random_gamma for details.

To make use of this function, write first load("distrib").


Next: , Previous: Noncentral Student's t Random Variable, Up: Functions and Variables for continuous distributions   [Contents][Index]