Package distrib
contains a set of functions for making probability computations on both discrete and continuous univariate models.
What follows is a short reminder of basic probabilistic related definitions.
Let f(x) be the density function of an absolute continuous random variable X. The distribution function is defined as $$ F\left(x\right)=\int_{ -\infty }^{x}{f\left(u\right)\;du} $$
which equals the probability \({\rm Pr}(X \le x)\).
The mean value is a localization parameter and is defined as $$ E\left[X\right]=\int_{ -\infty }^{\infty }{x\,f\left(x\right)\;dx} $$
The variance is a measure of variation, $$ V\left[X\right]=\int_{ -\infty }^{\infty }{f\left(x\right)\,\left(x -E\left[X\right]\right)^2\;dx} $$
which is a positive real number. The square root of the variance is the standard deviation, \(D[x]=\sqrt{V[X]}\), and it is another measure of variation.
The skewness coefficient is a measure of non-symmetry, $$ SK\left[X\right]={{\int_{ -\infty }^{\infty }{f\left(x\right)\, \left(x-E\left[X\right]\right)^3\;dx}}\over{D\left[X\right]^3}} $$
And the kurtosis coefficient measures the peakedness of the distribution, $$ KU\left[X\right]={{\int_{ -\infty }^{\infty }{f\left(x\right)\, \left(x-E\left[X\right]\right)^4\;dx}}\over{D\left[X\right]^4}}-3 $$
If X is gaussian, KU[X]=0. In fact, both skewness and kurtosis are shape parameters used to measure the non–gaussianity of a distribution.
If the random variable X is discrete, the density, or probability, function f(x) takes positive values within certain countable set of numbers x_i, and zero elsewhere. In this case, the distribution function is $$ F\left(x\right)=\sum_{x_{i}\leq x}{f\left(x_{i}\right)} $$
The mean, variance, standard deviation, skewness coefficient and kurtosis coefficient take the form $$ \eqalign{ E\left[X\right]&=\sum_{x_{i}}{x_{i}f\left(x_{i}\right)}, \cr V\left[X\right]&=\sum_{x_{i}}{f\left(x_{i}\right)\left(x_{i}-E\left[X\right]\right)^2},\cr D\left[X\right]&=\sqrt{V\left[X\right]},\cr SK\left[X\right]&={{\sum_{x_{i}}{f\left(x\right)\, \left(x-E\left[X\right]\right)^3\;dx}}\over{D\left[X\right]^3}}, \cr KU\left[X\right]&={{\sum_{x_{i}}{f\left(x\right)\, \left(x-E\left[X\right]\right)^4\;dx}}\over{D\left[X\right]^4}}-3, } $$
respectively.
There is a naming convention in package distrib
. Every function name has two parts, the first one makes reference to the function or parameter we want to calculate,
Functions: Density function (pdf_*) Distribution function (cdf_*) Quantile (quantile_*) Mean (mean_*) Variance (var_*) Standard deviation (std_*) Skewness coefficient (skewness_*) Kurtosis coefficient (kurtosis_*) Random variate (random_*)
The second part is an explicit reference to the probabilistic model,
Continuous distributions: Normal (*normal) Student (*student_t) Chi^2 (*chi2) Noncentral Chi^2 (*noncentral_chi2) F (*f) Exponential (*exp) Lognormal (*lognormal) Gamma (*gamma) Beta (*beta) Continuous uniform (*continuous_uniform) Logistic (*logistic) Pareto (*pareto) Weibull (*weibull) Rayleigh (*rayleigh) Laplace (*laplace) Cauchy (*cauchy) Gumbel (*gumbel) Discrete distributions: Binomial (*binomial) Poisson (*poisson) Bernoulli (*bernoulli) Geometric (*geometric) Discrete uniform (*discrete_uniform) hypergeometric (*hypergeometric) Negative binomial (*negative_binomial) Finite discrete (*general_finite_discrete)
For example, pdf_student_t(x,n)
is the density function of the Student distribution with n degrees of freedom, std_pareto(a,b)
is the standard deviation of the Pareto distribution with parameters a and b and kurtosis_poisson(m)
is the kurtosis coefficient of the Poisson distribution with mean m.
In order to make use of package distrib
you need first to load it by typing
(%i1) load("distrib")$
For comments, bugs or suggestions, please contact the author at ’riotorto AT yahoo DOT com’.