Previous: Functions and Variables for specific multivariate descriptive statistics, Nach oben: Package descriptive   [Inhalt][Index]

39.5 Functions and Variables for statistical graphs

Function: barsplot (data1, data2, …, option_1, option_2, …)
Function: barsplot_description (…)

Plots bars diagrams for discrete statistical variables, both for one or multiple samples.

data can be a list of outcomes representing one sample, or a matrix of m rows and n columns, representing n samples of size m each.

Available options are:

Function barsplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. There is also a function wxbarsplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

Univariate sample in matrix form. Absolute frequencies.

(%i1) load ("descriptive")$
(%i2) m : read_matrix (file_search ("biomed.data"))$
(%i3) barsplot(
        col(m,2),
        title        = "Ages",
        xlabel       = "years",
        box_width    = 1/2,
        fill_density = 3/4)$

Two samples of different sizes, with relative frequencies and user declared colors.

(%i1) load ("descriptive")$
(%i2) l1:makelist(random(10),k,1,50)$
(%i3) l2:makelist(random(10),k,1,100)$
(%i4) barsplot(
        l1,l2,
        box_width    = 1,
        fill_density = 1,
        bars_colors  = [black, grey],
        frequency = relative,
        sample_keys = ["A", "B"])$

Four non numeric samples of equal size.

(%i1) load ("descriptive")$
(%i2) barsplot(
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        title  = "Asking for something to four groups",
        ylabel = "# of individuals",
        groups_gap   = 3,
        fill_density = 0.5,
        ordering     = ordergreatp)$

Stacked bars.

(%i1) load ("descriptive")$
(%i2) barsplot(
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        makelist([Yes, No, Maybe][random(3)+1],k,1,50),
        title  = "Asking for something to four groups",
        ylabel = "# of individuals",
        grouping     = stacked,
        fill_density = 0.5,
        ordering     = ordergreatp)$

barsplot in a multiplot context.

(%i1) load ("descriptive")$
(%i2) l1:makelist(random(10),k,1,50)$
(%i3) l2:makelist(random(10),k,1,100)$
(%i4) bp1 : 
        barsplot_description(
         l1,
         box_width = 1,
         fill_density = 0.5,
         bars_colors = [blue],
         frequency = relative)$
(%i5) bp2 : 
        barsplot_description(
         l2,
         box_width = 1,
         fill_density = 0.5,
         bars_colors = [red],
         frequency = relative)$
(%i6) draw(gr2d(bp1), gr2d(bp2))$

For bars diagrams related options, see bars of package draw. See also functions histogram and piechart.

Function: boxplot (data)
Function: boxplot (data, option_1, option_2, …)
Function: boxplot_description (…)

This function plots box-and-whishker diagrams. Argument data can be a list, which is not of great interest, since these diagrams are mainly used for comparing different samples, or a matrix, so it is possible to compare two or more components of a multivariate statistical variable. But it is also allowed data to be a list of samples with possible different sample sizes, in fact this is the only function in package descriptive that admits this type of data structure.

Available options are:

Function boxplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. There is also a function wxboxplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

Box-and-whishker diagram from a multivariate sample.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix(file_search("wind.data"))$
(%i3) boxplot(s2,
        box_width  = 0.2,
        title      = "Windspeed in knots",
        xlabel     = "Stations",
        color      = red,
        line_width = 2)$

Box-and-whishker diagram from three samples of different sizes.

(%i1) load ("descriptive")$
(%i2) A :
       [[6, 4, 6, 2, 4, 8, 6, 4, 6, 4, 3, 2],
        [8, 10, 7, 9, 12, 8, 10],
        [16, 13, 17, 12, 11, 18, 13, 18, 14, 12]]$
(%i3) boxplot (A, box_orientation = horizontal)$
Function: histogram (list)
Function: histogram (list, option_1, option_2, …)
Function: histogram (one_column_matrix)
Function: histogram (one_column_matrix, option_1, option_2, …)
Function: histogram (one_row_matrix)
Function: histogram (one_row_matrix, option_1, option_2, …)
Function: histogram_description (…)

This function plots an histogram from a continuous sample. Sample data must be stored in a list of numbers or an one dimensional matrix.

Available options are:

Function histogram_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. There is also a function wxhistogram for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

A simple with eight classes:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (
           s1,
           nclasses     = 8,
           title        = "pi digits",
           xlabel       = "digits",
           ylabel       = "Absolute frequency",
           fill_color   = grey,
           fill_density = 0.6)$

Setting the limits of the histogram to -2 and 12, with 3 classes. Also, we introduce predefined tics:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) histogram (
           s1,
           nclasses     = [-2,12,3],
           htics        = ["A", "B", "C"],
           terminal     = png,
           fill_color   = "#23afa0",
           fill_density = 0.6)$

We make use of histogram_description for setting the xrange and adding an explicit curve into the scene:

(%i1) load ("descriptive")$
(%i2) ( load("distrib"),
        m: 14, s: 2,
        s2: random_normal(m, s, 1000) ) $
(%i3) draw2d(
        grid   = true,
        xrange = [5, 25],
        histogram_description(
          s2,
          nclasses     = 9,
          frequency    = relative,
          fill_density = 0.5),
        explicit(pdf_normal(x,m,s), x, m - 3*s, m + 3* s))$
Function: piechart (list)
Function: piechart (list, option_1, option_2, …)
Function: piechart (one_column_matrix)
Function: piechart (one_column_matrix, option_1, option_2, …)
Function: piechart (one_row_matrix)
Function: piechart (one_row_matrix, option_1, option_2, …)
Function: piechart_description (…)

Similar to barsplot, but plots sectors instead of rectangles.

Available options are:

Function piechart_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. There is also a function wxpiechart for creating embedded histograms in interfaces wxMaxima and iMaxima.

Example:

(%i1) load ("descriptive")$
(%i2) s1 : read_list (file_search ("pidigits.data"))$
(%i3) piechart(
        s1,
        xrange  = [-1.1, 1.3],
        yrange  = [-1.1, 1.1],
        title   = "Digit frequencies in pi")$

See also function barsplot.

Function: scatterplot (list)
Function: scatterplot (list, option_1, option_2, …)
Function: scatterplot (matrix)
Function: scatterplot (matrix, option_1, option_2, …)
Function: scatterplot_description (…)

Plots scatter diagrams both for univariate (list) and multivariate (matrix) samples.

Available options are the same admitted by histogram.

Function scatterplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. There is also a function wxscatterplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Examples:

Univariate scatter diagram from a simulated Gaussian sample.

(%i1) load ("descriptive")$
(%i2) load ("distrib")$
(%i3) scatterplot(
        random_normal(0,1,200),
        xaxis      = true,
        point_size = 2,
        dimensions = [600,150])$

Two dimensional scatter plot.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(
       submatrix(s2, 1,2,3),
       title      = "Data from stations #4 and #5",
       point_type = diamant,
       point_size = 2,
       color      = blue)$

Three dimensional scatter plot.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(submatrix (s2, 1,2), nclasses=4)$

Five dimensional scatter plot, with five classes histograms.

(%i1) load ("descriptive")$
(%i2) s2 : read_matrix (file_search ("wind.data"))$
(%i3) scatterplot(
        s2,
        nclasses     = 5,
        frequency    = relative,
        fill_color   = blue,
        fill_density = 0.3,
        xtics        = 5)$

For plotting isolated or line-joined points in two and three dimensions, see points. See also histogram.

Function: starplot (data1, data2, …, option_1, option_2, …)
Function: starplot_description (…)

Plots star diagrams for discrete statistical variables, both for one or multiple samples.

data can be a list of outcomes representing one sample, or a matrix of m rows and n columns, representing n samples of size m each.

Available options are:

Function starplot_description creates a graphic object suitable for creating complex scenes, together with other graphic objects. There is also a function wxstarplot for creating embedded histograms in interfaces wxMaxima and iMaxima.

Example:

Plot based on absolute frequencies. Location and radius defined by the user.

(%i1) load ("descriptive")$
(%i2) l1: makelist(random(10),k,1,50)$
(%i3) l2: makelist(random(10),k,1,200)$
(%i4) starplot(
        l1, l2,
        stars_colors = [blue,red],
        sample_keys = ["1st sample", "2nd sample"],
        star_center = [1,2],
        star_radius = 4,
        proportional_axes = xy,
        line_width = 2 ) $ 
Function: stemplot (data)
Function: stemplot (data, option)

Plots stem and leaf diagrams. Unique available option is:

Example:

(%i1) load ("descriptive")$
(%i2) load("distrib")$
(%i3) stemplot(
        random_normal(15, 6, 100),
        leaf_unit = 0.1);
-5|4
 0|37
 1|7
 3|6
 4|4
 5|4
 6|57
 7|0149
 8|3
 9|1334588
10|07888
11|01144467789
12|12566889
13|24778
14|047
15|223458
16|4
17|11557
18|000247
19|4467799
20|00
21|1
22|2335
23|01457
24|12356
25|455
27|79
key: 6|3 =  6.3
(%o3)                  done

Previous: Functions and Variables for specific multivariate descriptive statistics, Nach oben: Package descriptive   [Inhalt][Index]